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ABSTRACT

Context Dependent Spectral Unmixing

Report Title

A hyperspectral unmixing algorithm that �nds multiple sets of endmembers is proposed.

The algorithm, called Context Dependent Spectral Unmixing (CDSU), is a local approach that

adapts the unmixing to di�erent regions of the spectral space. It is based on a novel function that

combines context identi�cation and unmixing. This joint objective function models contexts as

compact clusters and uses the linear mixing model as the basis for unmixing.

Several variations of the CDSU, that provide additional desirable features, are also proposed.

First, the Context Dependent Spectral unmixing using the Mahalanobis Distance (CDSUM) o�ers the

advantage of identifying non-spherical clusters in the high dimensional spectral space. Second, the

Cluster and Proportion Constrained Multi-Model Unmixing (CC-MMU and PC-MMU) algorithms

use partial supervision information, in the form of cluster or proportion constraints, to guide the

search process and narrow the space of possible solutions. The supervision information could be

provided by an expert, generated by analyzing the consensus of multiple unmixing algorithms, or

extracted from co-located data from a di�erent sensor. Third, the Robust Context Dependent

Spectral Unmixing (RCDSU) introduces possibilistic memberships into the objective function to

reduce the e�ect of noise and outliers in the data. Finally, the Unsupervised Robust Context

Dependent Spectral Unmixing (U-RCDSU) algorithm learns the optimal number of contexts in an

unsupervised way. The performance of each algorithm is evaluated using synthetic and real data.

We show that the proposed methods can identify meaningful and coherent contexts, and appropriate

endmembers within each context.

The second main contribution of this thesis is consensus unmixing. This approach exploits

the diversity and similarity of the large number of existing unmixing algorithms to identify an accurate and consistent 
set of endmembers in the data. We run multiple unmixing algorithms using

di�erent parameters, and combine the resulting unmixing ensemble using consensus analysis. The

extracted endmembers will be the ones that have a consensus among the multiple runs.

The third main contribution consists of developing subpixel target detectors that rely on

the proposed CDSU algorithms to adapt target detection algorithms to di�erent contexts. A local

detection statistic is computed for each context and then all scores are combined to yield a �nal

detection score. The context dependent unmixing provides a better background description and

limits target leakage, which are two essential properties for target detection algorithms.
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ABSTRACT

CONTEXT DEPENDENT SPECTRAL UNMIXING

Hamdi Jenzri

August 11, 2014

A hyperspectral unmixing algorithm that finds multiple sets of endmembers is proposed.

The algorithm, called Context Dependent Spectral Unmixing (CDSU), is a local approach that

adapts the unmixing to different regions of the spectral space. It is based on a novel function that

combines context identification and unmixing. This joint objective function models contexts as

compact clusters and uses the linear mixing model as the basis for unmixing.

Several variations of the CDSU, that provide additional desirable features, are also proposed.

First, the Context Dependent Spectral unmixing using the Mahalanobis Distance (CDSUM) offers the

advantage of identifying non-spherical clusters in the high dimensional spectral space. Second, the

Cluster and Proportion Constrained Multi-Model Unmixing (CC-MMU and PC-MMU) algorithms

use partial supervision information, in the form of cluster or proportion constraints, to guide the

search process and narrow the space of possible solutions. The supervision information could be

provided by an expert, generated by analyzing the consensus of multiple unmixing algorithms, or

extracted from co-located data from a different sensor. Third, the Robust Context Dependent

Spectral Unmixing (RCDSU) introduces possibilistic memberships into the objective function to

reduce the effect of noise and outliers in the data. Finally, the Unsupervised Robust Context

Dependent Spectral Unmixing (U-RCDSU) algorithm learns the optimal number of contexts in an

unsupervised way. The performance of each algorithm is evaluated using synthetic and real data.

We show that the proposed methods can identify meaningful and coherent contexts, and appropriate

endmembers within each context.

The second main contribution of this thesis is consensus unmixing. This approach exploits

the diversity and similarity of the large number of existing unmixing algorithms to identify an

v



accurate and consistent set of endmembers in the data. We run multiple unmixing algorithms using

different parameters, and combine the resulting unmixing ensemble using consensus analysis. The

extracted endmembers will be the ones that have a consensus among the multiple runs.

The third main contribution consists of developing subpixel target detectors that rely on

the proposed CDSU algorithms to adapt target detection algorithms to different contexts. A local

detection statistic is computed for each context and then all scores are combined to yield a final

detection score. The context dependent unmixing provides a better background description and

limits target leakage, which are two essential properties for target detection algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Hyperspectral image data and analysis

Hyperspectral imaging contributes significantly to earth observation and remote sensing

[1–13]. It is also used in food safety [14–17], pharmaceutical process monitoring and quality control

[18–22], as well as in biomedical [23,24], industrial [25], biometric [26] and forensic applications [27].

Hyperspectral sensors capture both the spatial and spectral information of a scene. They

collect radiance data in hundreds of contiguous wavelengths. The focus is mainly on the visible,

near-infrared and shortwave infrared spectral bands (in the range between 0.4µm and 2.5µm [7]).

As the sensor collects data over a region, a data cube is generated. Figure 1.1 illustrates this concept.

The data cube can be interpreted as a stack of two-dimensional images captured over a range of

wavelengths. Each element of the data cube corresponds to the radiance measured at a particular

wavelength at one ground location [1, 28,29].

Spectral and spatial resolutions are two important characteristics of a hyperspectral sensor.

The spectral resolution of a sensor corresponds to the range of wavelengths over which radiance values

are measured and combined to become a single band in a hyperspectral image. The spatial resolution

corresponds to the size of the physical area on the ground from which radiance measurements are

taken for a single image pixel. As the area corresponding to one pixel increases, the spatial resolution

of the image decreases [1, 28].

The main appeal for hyperspectral imaging is that different materials reflect and emit vary-

ing amounts of radiance across the electromagnetic spectrum. In other words, different materials

generally have unique spectral signatures. Thus, hyperspectral sensors can be used to identify and

distinguish between different materials in a scene [28].

In a hyperspectral image, a pixel can be pure or mixed. A pure pixel corresponds to a

single material’s radiance values. On the other hand, a mixed pixel is a pixel which combines

the radiance values of multiple materials. Typically, most pixels are mixed as a result of the low

spatial resolution [1, 28]. This is because as the pixel’s corresponding area on the ground increases,
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Figure 1.1: Illustration of the hyperspectral imaging concept.1

neighboring materials are likely to be combined into the image pixel. Mixed pixels also occur when

the different materials are mixed on the ground. Beach sand is a common example for this type of

mixed pixel since grains of different materials are intermingled [1].

Pure spectral signatures, or the constituent spectra, in an imaged scene are referred to as

endmembers [1]. In the purest sense, endmembers can represent unique elements, e.g., calcium, iron,

and copper. However, in the practical sense of hyperspectral imaging, the endmembers more likely

represent disparate macroscopic entities, e.g., desert, forest, metal, and salt water [30]. Due to the

presence of mixed pixels in a hyperspectral image, spectral unmixing is often performed to decompose

mixed pixels into their respective endmembers and abundances. Abundances are the proportions

of the endmembers in each pixel. In estimating the endmembers and abundances in pixel spectra,

unmixing algorithms incorporate philosophical assumptions regarding the physical mechanisms and

mathematical structure by which the reflectance properties from disparate substances combine to

yield the mixed pixel spectra. In other words, spectral unmixing relies on the definition of a mixing

model.

Mixing models can be characterized as either linear or nonlinear [1, 31]. The linear mixing

1This image was taken from [29].
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model (also known as the convex geometry model) holds when the mixing scale is macroscopic [32] and

the incident light interacts with just one material, as is the case in checkerboard type scenes [33,34].

In this case, the mixing occurs within the sensor itself. It is due to the fact that the spatial resolution

of the sensor is not fine enough. The light from the materials, although almost completely separated,

is mixed within the measuring sensor. Figure 1.2 depicts linear mixing where the reflecting surface is

portrayed as a checkerboard mixture, and the incident radiation bounces only once on its surface. If

the total surface area is conceived to be divided proportionally according to the fractional abundances

of the constituent substances, then the reflected radiation will convey, with the same proportions,

the characteristics of the associated media.

Figure 1.2: Linear mixing from a checkerboard mixture of materials with a single reflection.1

The nonlinear mixing is usually due to the light interaction with multiple materials in the

scene. These interactions can be at a classical or multilayered level, or at a microscopic or intimate

level. Mixing at the classical level occurs when light scattered from one or more objects, is reflected

off additional objects, and eventually measured by the hyperspectral sensor. Microscopic mixing

occurs when two materials are homogeneously mixed [35]. In this case, the interactions consist

of photons emitted from the molecules of one material that are absorbed by molecules of another

material, which may in turn emit more photons. Figure 1.3 illustrates nonlinear mixing from an

intimate mixture.

Despite its simplicity, the linear mixing model has proved to be an acceptable approximation

of the light scattering mechanisms in many real scenarios. Furthermore, in contrast to nonlinear

mixing, the linear mixing model is the basis of a plethora of unmixing algorithms [1, 30,36–48].

1This image was taken from [1].
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Figure 1.3: Nonlinear mixing from an intimate mixture of materials.1

1.2 Linear Mixture Model

The standard model used to perform spectral unmixing is the convex geometry model (also

known as the linear mixing model). It states that every pixel’s spectral signature is a convex com-

bination of endmembers in the scene. This has been shown to hold in cases where the endmembers

are mixed by the spatial resolution of the imaging sensor [1, 36]. If the convex geometry holds, the

endmembers are the spectra found at the corners of a convex region enclosing all the spectra in the

hyperspectral scene. This model is defined as [1]:

xj =

M∑
k=1

pjkek + εj , j = 1, ..., N (1.1)

where xj (1 × d) is the spectral signature of pixel j, d is the number of spectral bands, N is the

number of pixels in the image, M is the number of endmembers, εj (1× d) is an error term, pjk is

the proportion of endmember k in pixel j, and ek (1 × d) is the kth endmember. The proportions

satisfy the following constraints:

pjk ≥ 0, ∀k = 1, ...,M ; and
M∑
k=1

pjk = 1, ∀j = 1, ..., N. (1.2)

In the hyperspectral unmixing literature, the constraints in (1.2) are referred to as abundance non-

negativity constraint (ANC) and abundance sum constraint (ASC), respectively. Equation (1.1) can

be rewritten in a matrix format as:

xj = pjE + εj , j = 1, ..., N. (1.3)

where E (M × d) is the mixing matrix containing the endmembers, pj (1×M) are the proportions

of pixel j in the M endmembers, and εj (1× d) is an error term. The constraints in (1.2) can also

1This image was taken from [1].
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be rewritten in a matrix format as:

pj ≥ 0, and 11×MpTj = 1, ∀j = 1, ..., N. (1.4)

where 11×M is a 1×M vector of ones.

Assuming that the rows of E are affinely independent, i.e., e2 − e1, e3 − e1, ..., eM − e1 are

linearly independent, then the set{
x = pE, such that

M∑
k=1

pk = 1, pk ≥ 0, k = 1, ...,M

}
(1.5)

i.e., the convex hull of the rows of E (conv{E}), is a (M − 1)-simplex in Rd. Figure 1.4 illustrates a

2-simplex for a hypothetical mixing matrix E containing three endmembers. In this figure, the green

points denote spectral vectors, and the red points are the vertices of the simplex and correspond to

the endmembers. Note that the inference of the mixing matrix E is equivalent to identifying the

vertices of the simplex. This is referred to as geometrical-based unmixing.

Figure 1.4: Illustration of the 2-simplex. Green points represent spectral vectors. Red points
represent vertices of the simplex and correspond to the endmembers.

Given a data set X (N × d) containing N d-dimensional spectral vectors, the linear hy-

perspectral unmixing problem, with reference to the linear model (1.3), consists of estimating the

mixing matrix E and the fractional abundance vectors pj for each pixel j = 1, ..., N .

1.3 Motivations and overview of the proposed research

1.3.1 Motivations

Most of the existing linear spectral unmixing algorithms assume that the hyperspectral data

points lie in a single convex region with one set of endmembers. However, it may be the case that

multiple sets of endmembers, defining several overlapping convex regions, can better describe the

hyperspectral image. This issue has been addressed in [49–53], where the linear mixing model has
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been extended to multiple sets of endmembers. Each endmember set is found using the convex

geometry model resulting in a piece-wise convex representation of the hyperspectral data. Another

limitation of existing spectral unmixing algorithms is that they do not take into account the distri-

bution of the data in the spectral space while unmixing. This is the case even for the piece-wise

convex representation in [49].

To address the above limitations of linear spectral unmixing, we propose a local hyperspectral

unmixing algorithm, called Context Dependent Spectral Unmixing (CDSU). CDSU takes into account

the distribution of the data in the spectral space while identifying multiple sets of endmembers. In

other words, the unmixing process is adapted to different regions of the spectral space.

Another challenge with most unmixing algorithms is that they require the knowledge of the

number of endmembers to be extracted before hand. Moreover, different algorithms have different

assumptions and modes of operation, usually yielding different results. Even the same algorithm

may not result in the same endmembers when run multiple times. This is mainly due to the non-

deterministic behavior of the algorithm. To address this limitation, we investigate using multiple

algorithms with different parameters to identify an accurate and consistent set of endmembers using

consensus analysis.

Spectral unmixing is a goal in itself, where one is interested in identifying the materials

present in the scene. Unmixing is also an initial step to other hyperspectral imaging applications,

such as target detection. In fact, spectral unmixing is used to describe the background with a

set of endmembers, based on which a detection statistic is computed for every pixel. Background

description is of paramount importance in target detection. A better description allows for a better

detection. Hence, we propose using the context dependent unmixing framework to design a new

class of detectors called Context Dependent Target Detectors.

1.3.2 Contributions

Our main contributions can be summarized as follows:

• We propose a Context Dependent Spectral Unmixing (CDSU) [54] algorithm. CDSU is based

on optimizing an objective function that combines context identification and spectral unmixing.

The context or region identification component thrives to partition the input spectral space

into different clusters (called contexts). The spectral unmixing component thrives to learn

optimal endmembers and abundances within each cluster.
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• We propose an extension to CDSU using the Mahalanobis distance (CDSUM) [55]. CDSUM

supports non-spherical cluster shapes.

• We propose two semi-supervised versions of CDSU that use partial supervision information to

constrain the problem, guide the optimization and narrow the space of possible solutions. The

Cluster Constrained Multi-Model Unmixing (CC-MMU) [55] algorithm uses cluster assignment

constraints on the pixels, while the Proportion Constrained Multi-Model Unmixing (PC-MMU)

algorithm uses constraints on the proportions of the pixels.

• We propose a Robust Context Dependent Spectral Unmixing (RCDSU) [56] algorithm. RCDSU

handles noise and outliers in the data, and finds the optimal number of contexts in an unsu-

pervised way (U-RCDSU) [56].

• We propose a robust unmixing approach based on consensus analysis [57]. We run multiple

unmixing algorithms using different parameters, and the goal is to find a consensus unmixing

by combining the unmixing ensemble resulting from those algorithms.

• We propose a new class of target detection algorithms, called Context Dependent Target

Detectors [58], that takes advantage of the context dependent unmixing framework. The

detection is performed locally within the extracted contexts, and a global detection statistic

is computed as a weighted sum of the local scores.

The remainder of this dissertation is organized as follows. Chapter 2 provides a review

of some linear spectral unmixing and target detection algorithms. Chapter 3 introduces the pro-

posed context dependent spectral unmixing algorithm and its variations. Chapter 4 introduces the

proposed robust unmixing using consensus analysis. Chapter 5 introduces the proposed context

dependent target detection algorithms. Chapter 6 provides experimental results and analyses of the

proposed methods. Finally, chapter 7 provides conclusions and potential future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides a review of some existing linear hyperspectral unmixing and target

detection algorithms. Methods that are relevant to our work are described in details.

2.1 Linear spectral unmixing

Spectral unmixing algorithms can be categorized into two main categories: pure pixel based

and minimum volume based approaches.

2.1.1 Pure pixel based unmixing algorithms

The pure pixel based algorithms belong to the minimum volume based approaches. They

have the additional assumption that the data have at least one pure pixel per endmember. In other

words, they assume that there is at least one spectral vector on each vertex of the data simplex. This

assumption is a strong requisite that may not hold in many datasets. These algorithms find the set of

purest pixels in the data. They have been often used in linear hyperspectral unmixing applications,

mainly because of their light computational burden and clear conceptual meaning [29]. Algorithms

relying on the pixel purity assumption include the Pixel Purity Index (PPI) algorithm [59] and the

N-FINDR algorithm [60], both of which are described in the next subsections.

2.1.1.1 The Pixel Purity Index

The Pixel Purity Index (PPI) [59] is a commonly used algorithm for determining the purest

pixels in a given hyperspectral image. It ranks image pixels based on their purity indices. Then,

the M pixels with the highest purity values are returned as potential endmembers. The number of

endmembers, M , is assumed to be known. PPI is often used for generating candidate endmembers

which are then used as inputs to other endmember extraction algorithms [61] or loaded into a

visualization tool for users to manually select endmembers from the list of potential candidates [62].

The PPI algorithm assigns each pixel a purity value by repeatedly projecting all of the pixels onto
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skewers, defined as a large set of random vectors. The algorithm is initialized by setting the purity of

each pixel to zero. The pixel purity values are updated following each random projection by adding

one to the values of the pixels that fall near either end of every projection. Since PPI values are

generated using random vectors, the results are dependent on the number of random projections

and the threshold for determining if a pixel’s projection is considered near an end-point [59].

2.1.1.2 N-FINDR

N-FINDR [60] is based on the fact that the volume defined by a simplex formed by the

purest pixels is larger than any other volume defined by any other combination of pixels. This

algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data.

The algorithm begins by randomly selecting a set of M pixels from the image to be the initial

endmember set E. Then, each endmember is replaced, in succession, by all other pixels in the

image. After each replacement, the volume of the space defined by the current set of potential

endmembers is computed. When a replacement increases the volume, the replacement is maintained.

The algorithm cycles through all image pixels and endmembers until no further replacements are

made.

The volume enclosed by each set of potential endmembers is computed using:

V (E∗) =
1

(M − 1)!
abs(|E∗|), (2.1)

where abs(.) refers to the absolute value, |.| refers to the determinant, and

E∗ = [1M×1,E]. (2.2)

If the dimensionality of the data is larger than (M − 1), then a dimensionality reduction method,

such as Principal Components Analysis or Maximum Noise Fraction, must be employed [63,64]. The

data dimensionality must be one less than the desired number of endmembers since the determinant

of a non-square matrix is not defined [60]. In addition to assuming that pure pixels can be found in

the image, N-FINDR requires the knowledge of the number of endmembers in advance.

Other pure pixel based algorithms include the Iterative Error Analysis (IEA) algorithm [65],

the Vertex Component Analysis (VCA) algorithm [66], the Simplex Growing Algorithm (SGA) [67],

and the Sequential Maximum Angle Convex Cone (SMACC) algorithm [68]. The IEA implements

a series of linear constrained unmixings, each time choosing as endmembers those pixels which min-

imize the remaining error in the unmixed image. The VCA algorithm iteratively projects data onto
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a direction orthogonal to the subspace spanned by the detected endmembers. The new endmember

signature corresponds to the maximum of the projection. The algorithm iterates until all endmem-

bers are exhausted. The SGA iteratively grows a simplex by finding the vertices, one at a time,

corresponding to the maximum volume. The SMACC algorithm represents the endmembers using

a convex cone. It starts with a single endmember and every iteration the data vector, making the

maximum angle with the existing cone, is chosen as the next endmember. The algorithm terminates

when all of the data vectors are within the convex cone, to some tolerance. A quantitative and

comparative analysis of these methods is given in [39].

2.1.2 Minimum volume based unmixing algorithms

The minimum volume approaches seek a mixing matrix E that minimizes the volume of the

simplex defined by its rows (endmembers), subject to the constraint that it contains the observed

spectral vectors. The pure pixel constraint is no longer enforced.

Examples of minimum volume based algorithms include the Nonnegative Matrix Factor-

ization Minimum Volume Transform (NMF-MVT) algorithm [69], the Minimum Volume Simplex

Analysis (MVSA) algorithm [70], and the Simplex Identification via Split Augmented Lagrangian

(SISAL) algorithm [71].

In the following, we focus on two minimum volume based algorithms that are closely related

to our proposed approach. The first one is the Iterated Constrained Endmembers (ICE) algorithm

[61] which fits a simplex to the data while penalizing its volume. The second one is the Piece-

wise Convex Multiple Model Endmember Detection (P-COMMEND) algorithm [49] which models

a hyperspectral image using a piece-wise convex representation.

2.1.2.1 ICE: Iterated Constrained Endmembers

The ICE algorithm [61] is based on the joint optimization of two terms. The first term is the

residual sum of squares (RSS) based on the convex geometry model in equation (1.1). This term is

defined as

RSS =
N∑
j=1

(
xj −

M∑
k=1

pjkek

)(
xj −

M∑
k=1

pjkek

)T
, (2.3)

where xj (1× d) is the spectral signature of pixel j, d being the number of spectral bands, N is the

number of pixels in the image, M is the number of endmembers, pjk is the proportion of endmember

k for pixel j, and ek (1 × d) is the kth endmember. The proportions satisfy the constraints in

equation (1.2).
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The second term of the ICE algorithm is the sum of squared distances (SSD) between all the

simplex vertices. This term represents an approximation of the volume of the simplex. Therefore,

by adding this term, ICE finds endmembers that provide a tight fit around the data. The SSD term

is defined as

SSD =
M−1∑
k=1

M∑
l=k+1

(ek − el)(ek − el)
T . (2.4)

The objective function of the ICE algorithm is a weighted sum of both RSS and SSD terms [62].

It is defined as

J = (1− µ)
RSS

N
+ µ

SSD

M(M − 1)
, (2.5)

where µ is a tradeoff or a regularization parameter in (0, 1) used to balance the RSS and SSD

terms. In [61], the authors recommend using one value of µ for all datasets. For this to be possible,

the objective function should be approximately independent of the sample size N and the number

of endmembers M . This is the reason for normalizing RSS by N and SSD by M(M − 1) in (2.5).

It is instructive to consider the limiting behavior of µ near its extreme values, 0 and 1. As µ

tends to 0, the limiting solution is an (M − 1)-simplex which totally encloses the data points while

ignoring the tightness of fit. On the other hand, as µ tends to 1, the algorithm results in a trivial

solution where all the endmembers converge to one point, the mean of the data.

The ICE algorithm minimizes the objective function in (2.5) iteratively. First, given end-

member estimates, the proportions for each pixel are estimated. Initially, endmembers may be set

to randomly chosen pixels from the image. Estimating the proportions requires a least squares min-

imization of each term in equation (2.3). Since each of these terms is quadratic and subjected to

the linear constraints in equation (1.2), the minimization can be achieved using quadratic program-

ming. After solving for the proportions, the endmembers are updated using the current proportion

estimates [61].

Like most iterative solutions to nonlinear continuous parameter optimization problems, the

ICE algorithm will asymptotically approach a local minimum of the objective function [61]. There-

fore, the iterative procedure is stopped when the estimated parameters do not change significatively

between successive iterations. Algorithm 2.1 illustrates the steps of the ICE algorithm.

Although ICE is an effective algorithm for finding endmembers, it can provide only a single

set of endmembers for the entire input data set. This may not provide a compact description of

the hyperspectral scene. An attempt to alleviate this shortcoming was proposed in [49], where the

linear mixture model has been extended to multiple sets of endmembers. It is called the Piece-wise

Convex Multiple Model Endmember Detection (P-COMMEND) algorithm.
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Algorithm 2.1 Iterated Constrained Endmembers

Inputs: X: the data points (N × d).
M : the number of endmembers.
µ: the regularization parameter µ ∈ (0, 1).

Outputs: E: the estimated endmembers.
P: the estimated proportions.

Initialize E
repeat

Update P.
Update E.

until parameters do not change significatively
return E, P

2.1.2.2 P-COMMEND: Piece-wise Convex Multiple Model Endmember Detection

P-COMMEND [49] is a hyperspectral unmixing algorithm that finds multiple sets of end-

members. It models a hyperspectral image using a piece-wise convex representation to characterize

non-convex hyperspectral data. It assumes that a hyperspectral scene contains multiple distinct

regions that do not share common materials. Each region is defined by a simplex with a set of

endmembers.

P-COMMEND estimates endmember sets and proportion values by minimizing

J =

C∑
i=1

 N∑
j=1

umij (xj − pijEi) (xj − pijEi)
T

+ α

M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T

 , (2.6)

subject to

uij ∈ [0, 1],∀i, j,
C∑
i=1

uij = 1,∀j (2.7)

and

pij ≥ 0, and 11×MpTij = 1,∀i, j. (2.8)

where xj (1 × d) is the spectral signature of pixel j, d is the number of spectral bands, N is the

number of pixels in the image, M is the number of endmembers, and C is the number of models,

convex regions, or sets of endmembers. In (2.6), pij (1×M) is the vector of proportions associated

with pixel j with respect to model i, Ei (M × d) is the mixing matrix corresponding to model i,

and eik (1 × d) is the kth row of Ei representing the kth endmember in the ith endmember set. In

(2.6), uij represents the membership of pixel j in model i, indicating the degree to which pixel j

contributes to the endmembers of convex set i. Finally, m ∈ (1,+∞) is a fuzzifier controlling the

degree of sharing between the models, and α is a fixed parameter used to balance the two terms of

the objective function.
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The first term in (2.6) computes the residual sum of squares (RSS) between each input

hyperspectral data point and its estimate using the estimated endmembers and proportion values.

The second term is used to constrain the size of each simplex by minimizing the sum of squared

distances (SSD) between each pair of endmembers within each set. Note that, when C = 1, the

P-COMMEND objective function reduces to the ICE objective function in equation (2.5) (to a

normalization factor).

In [49], the authors showed that, using Lagrange multipliers optimization along with the

Karush-Kuhn-Tucker (KKT) conditions, the objective function in (2.6) can be minimized by updat-

ing the endmembers, the proportions and the fuzzy memberships using

Ei =

α(MIM×M − 1M×M ) +
N∑
j=1

umijp
T
ijpij

−1  N∑
j=1

umijp
T
ijxj

 , (2.9)

pTij = max

([
EiE

T
i

]−1[
Eix

T
j +

1− 11×M (EiE
T
i )−1Eix

T
j

11×M (EiET
i )−11M×1

1M×1

]
, 0

)
, (2.10)

and

uij =

[
(xj − pijEi)(xj − pijEi)

T
] 1

1−m

C∑
q=1

[(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

. (2.11)

In (2.9) and (2.10), the notation [A]−1 refers to the inverse of matrix A.

The P-COMMEND algorithm is outlined in Algorithm 2.2 [49].

Algorithm 2.2 Piece-wise Convex Multiple Model Endmember Detection

Inputs: X: the data points (N × d).
C: the number of models.
M : the number of endmembers for each model.
m: the fuzzifier, m ∈ (1,+∞).
α: the weight of the second term in the objective function.

Outputs: U: the fuzzy membership matrix of the data samples.
Ei: the sets of endmembers in all models.
Pi: the sets of proportions in all models.

Initialize U and Ei.
repeat

Update Pi using (2.10).
Update Ei using (2.9).
Update U using (2.11).

until parameters do not change significatively
return U, Ei, Pi

In the implementation of the P-COMMEND algorithm [49], the membership values are

initialized using the Fuzzy C-Means algorithm [72] (which is, in turn, randomly initialized), and the
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endmember sets Ei are initialized using the Minimum Volume Simplex Analysis (MVSA) algorithm

[70]. The algorithm is stopped whenever the estimated parameters do not change significatively

between successive iterations.

Other variations of the P-COMMEND algorithm have been proposed. These include a

multiple model endmember detection algorithm based on spectral and spatial information [50], a

spatially-smooth piece-wise convex endmember detection algorithm [51], a competitive agglomera-

tion piece-wise convex multiple model endmember detection algorithm [52], and a piece-wise convex

spatial-spectral unmixing algorithm using possibilistic and fuzzy clustering [53].

The multiple model endmember detection algorithm based on spectral and spatial informa-

tion [50] adds a spatial information term to the P-COMMEND objective function. The idea is to

fit the hyperspectral data using a convex geometry model locally. The assignment of a point to a

model is done according to its spectral and spatial information. Using the same notation as for the

P-COMMEND objective function above, the objective function is defined as:

J =
C∑
i=1

[ N∑
j=1

umij (xj − pijEi) (xj − pijEi)
T

+ ρ
N∑
j=1

umij (yj − ci)(yj − ci)
T

+α
M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T
]
, (2.12)

subject to the constraints in (2.7) and (2.8).

In (2.12), yj is the 2-dimensional spatial coordinate vector of pixel j, ci is the spatial center of

the points assigned to the ith model, and ρ is a scaling parameter. Using Lagrange multipliers

optimization along with the Karush-Kuhn-Tucker (KKT) conditions, it was shown [50] that the

objective function in (2.12) can be minimized by updating the endmembers and the proportions

using (2.9), (2.10), and the fuzzy memberships and centers using

uij =

[
(xj − pijEi)(xj − pijEi)

T + ρ(yj − ci)(yj − ci)
T
] 1

1−m

C∑
q=1

[(xj − pqjEq)(xj − pqjEq)T + ρ(yj − cq)(yj − cq)T ]
1

1−m

, (2.13)

and

ci =

N∑
j=1

umijyj

N∑
j=1

umij

. (2.14)

The spatially-smooth piece-wise convex endmember detection algorithm (Spatial P-COMMEND)

[51] extends P-COMMEND by incorporating spatial information to aid in estimating endmembers

and abundance values. Spatial information is incorporated by encouraging neighboring pixels in the

image to have similar membership values to the different convex regions. This is accomplished by
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adopting the spatially-smooth Fuzzy Local Information C-Means method, FLICM, developed in [73].

The FLICM algorithm adds a fuzzy factor term, G, to the objective function that influences the

updates of the membership values by incorporating spatial information. The G term, adapted for

use in the Spatial P-COMMEND algorithm, is defined as:

Gij =
∑
k∈Nj
k 6=j

1

djk + 1
(1− uik)m‖xk − pikEi‖22, (2.15)

where j is the center pixel in the local window under consideration, Nj is the neighborhood around

the center pixel (such as a 3 × 3 window), and djk is the Euclidean distance in pixel space of the

image indices between pixels j and k. Therefore, the G term scales the influence of neighboring

pixels based on their distances to the center pixel in the index space. When a neighboring pixel has

high membership in a convex region, the center pixel under consideration is encouraged to also have

a high membership in that region. The fuzzy factor term is updated every iteration and treated

as a constant during the updates of the endmembers, abundances and membership values. Adding

the term in (2.15) and using the same notation as for the P-COMMEND objective function, the

objective function of the Spatial P-COMMEND is defined as:

J =

C∑
i=1

(
N∑

j=1

um
ij

[
(xj − pijEi) (xj − pijEi)

T +Gij

]
+ α

M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T

)
, (2.16)

subject to the constraints in (2.7) and (2.8).

In Spatial P-COMMEND, the update equations for the endmembers and abundances remain the

same as in equations (2.9) and (2.10) respectively. The membership update equation becomes

uij =

[
(xj − pijEi)(xj − pijEi)

T +Gij
] 1

1−m

C∑
q=1

[(xj − pqjEq)(xj − pqjEq)T +Gqj ]
1

1−m

. (2.17)

The Spatial P-COMMEND algorithm performs alternating optimization on the endmembers, abun-

dances and memberships until some stopping criterion is reached such as convergence or a maximum

number of iterations.

The competitive agglomeration piece-wise convex multiple model endmember detection al-

gorithm (CAP) [52] integrates the competitive agglomeration algorithm [74] into P-COMMEND in

order to estimate the number of convex regions needed for a given data set. The competitive ag-

glomeration algorithm uses a regularization term with the sum of squares of the cardinalities (sum

of the memberships) of the clusters. Using the same notation as for the P-COMMEND objective
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function, the objective function of CAP is defined as:

J =
C∑
i=1

[ N∑
j=1

u2ij (xj − pijEi) (xj − pijEi)
T

+α
M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T − β

( N∑
j=1

uij

)2]
, (2.18)

subject to the constraints in (2.7) and (2.8). In (2.18), β is a scaling parameter.

The update equations for the endmembers and proportion values remain the same as in P-COMMEND

(equations (2.9) and (2.10) respectively) with a fuzzifier value of 2. The update equation for the

membership values becomes

uij =
βNi + λj

(xj − pijEi)(xj − pijEi)T
, (2.19)

where

λj =

1− β
C∑
k=1

Nk
‖xj−pkjEk‖22

C∑
k=1

1
‖xj−pkjEk‖22

, (2.20)

and

Nk =
N∑
j=1

ukj . (2.21)

Competitive agglomeration encourages sparsity in the membership values. When the membership

values associated with a single convex region drop below a prescribed threshold, the convex region

can be removed. Following the discussion in [74], the parameter for the competitive agglomeration

term is adjusted every iteration using the following annealing schedule:

β(t) = β0e
−t
τ

C∑
i=1

N∑
j=1

u2ij‖xj − pijEi‖22

C∑
i=1

( N∑
j=1

uij

)2 , (2.22)

where t is the iteration number, and τ and β0 are constants. This schedule for the β parameter tries

to balance the residual error term and the competitive agglomeration term while giving a larger

weight to the error term as the number of iterations increases.

The piece-wise convex spatial-spectral unmixing algorithm using possibilistic and fuzzy clus-

tering [53] associates both fuzzy and typicality membership values with each pixel to learn sets of

endmembers (i.e. convex regions). This algorithm integrates concepts from the Fuzzy Local Infor-

mation C-Means (FLICM) method [73], and the Possibilistic Fuzzy C-Means (PFCM) method [75]

into the P-COMMEND objective function. Using the same notation as for P-COMMEND, the
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objective function is defined as:

J =
C∑
i=1

[ N∑
j=1

(
aumij

[
(xj − pijEi)(xj − pijEi)

T +Gij
]

+ btnij(xj − pijEi)(xj − pijEi)
T
)

+α
M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T + γi

N∑
j=1

(1− tij)n
]
, (2.23)

subject to the constraints in (2.7), (2.8), and

tij ∈ [0, 1],∀i, j, and
C∑
i=1

tij ≤ 1,∀j. (2.24)

In (2.23), a, b, n > 1 and γi are positive constants.

In [53], it was shown that the optimization of (2.23) yields an update equation for the proportions

that is the same as the P-COMMEND algorithm (equation (2.10)). Similarly, the membership

update equation is as in (2.17). The endmembers need to be updated using

Ei =

α(MIM×M − 1M×M ) +
N∑
j=1

(aumij + btnij)p
T
ijpij

−1  N∑
j=1

(aumij + btnij)p
T
ijxj

 , (2.25)

and the update equation for the typicality is

tij =
1

1 +
(
b
γi
‖xj − pijEi‖22

)( 1
n−1 )

. (2.26)

In the above equation, the γi values are set to be the mean of the ‖xj − pijEi‖22 values for all the

pixels in the associated convex region. Therefore, γi are updated in every iteration.

Although the P-COMMEND algorithm and its variations allow the detection of multiple

sets of endmembers for a hyperspectral image, they do not take into account the distribution of the

data in the spectral space. In fact, the estimated endmember sets are the result of the piece-wise

convex and spatial representation of the data. Thus, they do not have a spectral meaning.

In the next chapter, we introduce our approach for hyperspectral unmixing which alleviates

this shortcoming by taking into account the distribution of the data in the spectral space while

unmixing.

2.2 Target detection using hyperspectral imaging

Besides material identification through spectral unmixing, remote sensing using hyperspec-

tral images is used for a variety of other civilian and military applications. These can be categorized

into 4 main tasks [76]:
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• Target detection: searching the pixels of a hyperspectral image for “rare” pixels with known

spectral signatures,

• Anomaly detection: searching the pixels of a hyperspectral image for pixels whose spectra

significantly differ from the local background,

• Change detection: finding the “significant” spectral changes over time between two hyperspec-

tral images of the same geographic region,

• Classification: assigning a label to each pixel of a hyperspectral image.

In this work, we are interested in target detection. Investigating the other applications is a potential

future work. In the following, we review the use of hyperspectral imaging for target detection.

2.2.1 Definitions

A target is defined as any object or material being sought in a hyperspectral image. Targets

that occupy multiple pixels are referred to as multipixel or resolved targets. The detection of resolved

targets can exploit spatial and spectral properties of the image. Subpixel targets, on the other hand,

occupy only a part of the pixel. The remaining part is filled with one or more materials, which

are collectively referred to as background [28]. The detection of subpixel targets exploits spectral

properties only. Hyperspectral imaging provides an invaluable tool for subpixel target detection, as

it can identify and distinguish between different materials having different spectral signatures.

Typically, the number of targets in a scene is too small to support the estimation of the

statistical properties of the target class, and pattern classification algorithms that require such

information are hence not applicable.

Instead, the design and evaluation of detection algorithms can be achieved using an area of

statistics known as binary hypothesis testing. In particular, the likelihood ratio (LR) test is used

for many target detectors. It minimizes the risk associated with incorrect decisions, and leads to

detectors that are optimum for a wide range of performance criteria, including the maximization of

separation between target and background spectra [28].

Given an observed spectrum x, we want to choose between two competing hypotheses:

H0: Target absent

H1: Target present
(2.27)
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The likelihood ratio is the ratio of the conditional probability density functions under the two

hypotheses:

Λ(x) =
p(x|H1)

p(x|H0)
. (2.28)

If Λ(x) exceeds a certain threshold η, then H1 is selected as true. This suggests the detector structure

shown in figure 2.1. The test pixel x gets mapped into a scalar y = Λ(x), referred to as detection

Figure 2.1: Target detector structure.

statistic, which is compared to η to decide whether a target is present.

The choice of η controls the number of correct detections and the number of detection errors

(target misses and false alarms). This is illustrated in figure 2.2.

Figure 2.2: Threshold selection trade-offs.1

There is a compromise between choosing a low threshold to increase the probability of detection PD,

and a high threshold to keep the probability of false alarms PFA low. The trade-off between PD

1This image was taken from [28].
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and PFA is described by the receiver operating characteristic (ROC) curve, which plots PD versus

PFA as a function of all possible values of the threshold η. Therefore, ROC curves provide a means

to evaluate the detector performance or compare detectors independently of threshold selection.

In subpixel target detection, the spectrum of the target is mixed with the spectra of the

background. Finding a good model for the background is key for detection [28]. Different models

lead to different detectors. If a statistical distribution is used to model the background, the model

is said to be unstructured [28]. In contrast, when a subspace is used to model the background, the

model is said to be structured [28]. In the following, we describe few subpixel target detectors based

on each kind of the background models, with more emphasis on the structured background model.

2.2.2 Target detection using unstructured background models

In this case, the background is modeled using a multivariate normal distribution with zero

mean and covariance matrix Γ. This assumes that the background is homogeneous. Due to the

zero mean background assumption, the sample mean of the image should be removed from all image

pixels and target spectra beforehand.

A well known unstructured background target detector is the adaptive coherence/cosine

estimator (ACE) detector [77]:

TACE(x) =
(stΓ̂

−1xT )2

(stΓ̂−1sTt )(xΓ̂−1xT )
, (2.29)

where x is the spectral signature of the test pixel, st is the spectrum of the target, and Γ̂ is the

maximum likelihood estimate of the covariance matrix Γ.

If we consider the square-root decomposition of Γ̂ = Γ̂
1
2 Γ̂

1
2 , the transformation zT = Γ̂−

1
2 xT

is called adaptive whitening. The ACE detector can be expressed as:

TACE(x) =
(̃stz

T )2

(̃sts̃Tt )(zzT )
=

(̃stz
T )2

‖s̃t‖2‖z‖2
= cos2 θ (2.30)

where s̃Tt = Γ̂−
1
2 sTt is the whitened target signature. This shows that, in the whitened coordinate

space, TACE(x) is equal to the cosine square of the angle θ between the test pixel and the target.

A similar unstructured target detector was developed by E. J. Kelly [78]:

TKelly(x) =
(stΓ̂

−1xT )2

(stΓ̂−1sTt )(N + xΓ̂−1xT )
, (2.31)

where N denotes the number of pixels in the image.
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2.2.3 Target detection using structured background models

If a subspace is used to model the background, the detection problem involves choosing

between the following competing hypotheses:

H0: x = pbE + w (Target absent)

H1: x = ptst + pbE + w (Target present)
(2.32)

where st denotes the spectrum of the target (specified by the user), the matrix E denotes the

background subspace (estimated from the data), the vector pb and the scalar pt represent the

proportions of the background and the target in the test pixel x, and w is an error term assumed

to be normally distributed with zero mean and covariance Γw = σ2
wI.

2.2.3.1 Adaptive Matched Subspace Detector (AMSD)

In practice, the parameters pb, pt and σ2
w are unknown. Using their maximum likelihood

estimates (MLE) results in the generalized likelihood ratio (GLR) [76]:

GLR(x) ,

[
xPb

⊥xT

xPS
⊥xT

]d/2
, (2.33)

where d is the dimension of x,

Pb
⊥ = I−ET (EET )−1E, (2.34)

is the background orthogonal projection error matrix, and PS
⊥ is the error matrix of the orthogonal

projection on the composite target and background space S = [st; E], computed by replacing E with

S in (2.34). Notice that σ2
w is not required for the computation of GLR because it cancels out.

The GLR in equation (2.33) is used to design a detection statistic called Adaptive Matched

Subspace Detector (AMSD) [76]:

TAMSD(x) =
xPb

⊥xT

xPS
⊥xT

. (2.35)

In (2.35), the numerator is proportional to the residual of the projection of x on the background

space, while the denominator is proportional to the residual of the projection of x on the combined

target and background space. Thus, the ratio becomes large when the test pixel representation in

the combined target and background space S is better than its representation in the background

space E. In other words, the larger the ratio in (2.35) the more likely that pixel x contains the

target.
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2.2.3.2 Orthogonal Subspace Projection (OSP) Detector

The proportion pt of the target st in pixel x can be estimated as [76]:

pt =
stPb

⊥xT

stPb
⊥sTt

, (2.36)

where Pb
⊥ is the same as in equation (2.34). The numerator in (2.36) has been proposed as a

detection statistic under the Orthogonal Subspace Projection (OSP) name [76]:

TOSP(x) = stPb
⊥xT . (2.37)

The operation Pb
⊥xT removes from xT the part which belongs to the background E. The residual is

then projected on the target st. The larger this quantity is, the more likely the test pixel x contains

the target.

2.2.3.3 Hybrid Subspace Detector (HSD)

Unlike OSP and AMSD, which perform an unconstrained least squares estimate of the abun-

dances using orthogonal projection [76], the Hybrid Subspace Detector (HSD) estimates these abun-

dances using the fully constrained least squares algorithm [79]. This assures the satisfaction of the

non-negativity and sum-to-one constraints and provides a meaning to the abundances [79]. HSD

uses the following detection statistic:

THSD(x) =
(x− pbE)Γ−1(x− pbE)T

(x− psS)Γ−1(x− psS)T
, (2.38)

where E is the background subspace matrix, pb is the estimate of the abundances of the test pixel

in E, S = [st; E] is the composite target and background space, ps is the estimate of the abundances

of the test pixel in S, and Γ−1 denotes the inverse of the covariance matrix of the background.

The OSP, AMSD, HSD, and other structured target detectors use global methods to model

the background subspace. These methods include eigenvector decomposition of the data correlation

matrix [76], and global unmixing algorithms such as ICE [61], MVSA [70], and NFINDR [60]. These

global methods may not provide a good description of the hyperspectral data when the scene contains

multiple distinct regions that do not share common materials. In this case, unmixing methods that

can learn multiple background models, that correspond to regions with different characteristics, are

more appropriate. Moreover, most global unmixing methods face the challenge of target leakage

into the background, which is the contribution of the target pixels to the background model, due to

their presence in the scene.
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CHAPTER 3

CONTEXT DEPENDENT SPECTRAL UNMIXING

In this chapter, we introduce our approach, called Context Dependent Spectral Unmixing

(CDSU), to hyperspectral unmixing. It finds multiple sets of endmembers and takes into account

the distribution of the data in the spectral space while unmixing. First, we present the motiva-

tions behind this approach. Then, we propose a novel objective function and derive the necessary

conditions to optimize it.

3.1 Motivations

To motivate our proposed approach, we present three examples of data sets and analyze the

performance of the previously presented ICE and P-COMMEND algorithms on them. The data sets

are chosen to be 2-dimensional for easier visualization.

3.1.1 Example 1

In this example, we consider a 2-dimensional data set of 250 points generated using the

convex geometry model in (1.1). A zero error term is considered. One set of three endmembers is

used:

E1 =


1 3

2 3

1.5 5

 . (3.1)

The proportions are chosen randomly from a standard uniform distribution and are normalized to

sum to one. The data is illustrated in figure 3.1(a). Blue points denote the data vectors and green

points denote the true endmembers used to generate the data set.

The result of the ICE algorithm on this data set, using M = 3 and µ = 0.0009, is shown in figure

3.1(b). The detected endmembers are shown in red. The result of the P-COMMEND algorithm,

using C = 1, M = 3, m = 2, and α = 0.01, is shown in figure 3.1(c). The detected endmembers are

shown in red.

As it can be seen, for this simple example, both ICE and P-COMMEND succeeded in identifying
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(a) (b) (c)

Figure 3.1: Example 1: (a) Synthetic two-dimensional data with one convex hull. (b) Endmembers
detected by the ICE algorithm. (c) Endmembers detected by the P-COMMEND algorithm.

endmembers at the vertices of the convex hull enclosing the data points providing a tight fit around

them.

3.1.2 Example 2

In this example, we consider a 2-dimensional data set of 500 points generated using the

convex geometry model in (1.1) with a zero error term. For this example, we use two sets of

endmembers. Each set has three endmembers and was used to generate 250 points. The first set is

the same as in (3.1), and the second one is:

E2 =


1 1

2 1

1.5 2.5

 . (3.2)

Similar to example 1, the proportions are chosen randomly from a standard uniform distribution

and are normalized to sum to one. This data is plotted in figure 3.2(a), where blue points denote

the data vectors and green points denote the true endmembers used to generate the data.

The results of the ICE algorithm on this data set, using M = 3 and M = 6, are shown in figures

3.2(b) and (c) respectively. A value of µ = 0.0009 was used for both cases. The detected endmembers

are shown in red. As it can be seen, the ICE algorithm failed to identify correct endmembers for this

data set. This is due to the fact that ICE assumes a single convex region for the entire data, and

this assumption is not valid for this data set. Consequently, the detected erroneous endmembers

and the associated abundances will have a negative impact on any further processing or analysis

based on them.

The result of the P-COMMEND algorithm, using C = 2, M = 3, m = 2, and α = 0.01, is shown in

figure 3.2(d). The detected endmembers are shown in red for one cluster and in green for the other
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one. As it can be seen, P-COMMEND succeeded in identifying endmember sets at the vertices of

(a) (b)

(c) (d)

Figure 3.2: Example 2: (a) Synthetic two-dimensional data with two convex hulls. (b) Endmembers
detected by the ICE algorithm with M = 3. (c) Endmembers detected by the ICE algorithm with
M = 6. (d) Endmembers detected by the P-COMMEND algorithm.

the convex hulls enclosing the data points and thus, providing a tight fit around them.

3.1.3 Example 3

In this example, we consider a 2-dimensional data set of 1000 points, arranged so that they

form three clusters. These are illustrated in figure 3.3(a), where clusters are represented using

different colors.

We run the P-COMMEND algorithm on this data set, using C = 3, M = 3, m = 2, α = 0.11

and using the true cluster assignment in figure 3.3(a) as the initial membership values U. We use

this initialization to illustrate the fact that the results of P-COMMEND are not due to convergence

to local minima. As for the initialization of the endmember sets Ei, we pick three random points

1Other values of α can lead to better results
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(a) (b)

Figure 3.3: Example 3: (a) Synthetic two-dimensional data with three convex hulls (colors represent
true cluster assignments). (b) Result of the P-COMMEND algorithm.

from each cluster. The result after convergence is illustrated in figure 3.3(b), where clusters are

represented using different colors, and the endmembers for each cluster are represented using bolder

points. The assignment of a point to a cluster is based on its highest membership value. As it

can be seen, P-COMMEND diverged from the initial cluster assignments and led to clusters that

do not match the distribution of the data. These clusters resulted from the convex geometry of

the estimated endmembers. Consequently, the detected erroneous endmembers and the associated

abundances will have a negative impact on any further processing or analysis based on them.

Based on the above three examples, the motivation behind our approach is two-fold. First,

there is a need for an unmixing algorithm that is able to find multiple sets of endmembers for an

input hyperspectral data and not only a unique set. In general, multiple sets would provide a better

description of the hyperspectral scene. This is because hyperspectral images tend to be large and

may contain multiple distinct regions that do not share common materials, and hence need multiple

sets of endmembers to fully describe it. Second, there is a need to find sets of endmembers that

represent semantically meaningful regions of the hyperspectral image. In other words, we need to

take into account the distribution of the data in the spectral space while unmixing.

The idea of the proposed approach is based on context-based processing which has been

shown to be important in many signal processing applications [80–82]. In [80, 81], the authors

presented a fusion method, called Context-Dependent Multi-Sensor Fusion (CDMSF), which fuses

the results of multiple landmine detection algorithms that use different types of features, different

classification methods, and different sensors. The approach was motivated by the fact that the

relative performance of different detectors can vary significantly depending on the sensor, mine
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type, geographical site, soil and weather conditions, and burial depth.

In [82], the authors point out that CDMSF [80, 81] treats the partitioning of the feature space and

the selection of local expert classifiers as two independent processes performed sequentially. They

claim that these two tasks are not independent, and their optimization should be combined. To

alleviate this limitation, they proposed a generic framework for context-dependent fusion, called

Context Extraction for Local Fusion (CELF) [82], that jointly optimizes the partitioning of the

feature space and the fusion of the classifiers. They defined a novel objective function that, when

optimized, produces contexts via unsupervised clustering while simultaneously providing optimal

fusion parameters for each context. The authors have shown that CELF can identify meaningful

and coherent clusters where different expert algorithms can be identified. Their experiments have

also indicated that their proposed fusion approach outperforms all individual detectors.

Motivated by the above context dependent processing, our proposed unmixing approach

adapts the unmixing to different regions of the spectral space.

3.2 Context Dependent Spectral Unmixing

The Context Dependent Spectral Unmixng (CDSU) algorithm is a local approach that adapts

the unmixing to different regions of the spectral space. It is based on a novel objective function that

combines context identification and spectral unmixing into a joint function. This objective function

models contexts as compact clusters and uses the linear mixing model as the basis for unmixing.

The unmixing provides optimal endmembers and abundances for each context.

In the following, we assume that we have N spectral signatures, X = {xj ∈ Rd, j = 1, ..., N},

obtained from a hyperspectral scene, each having d spectral bands. CDSU combines context identi-

fication and spectral unmixing into a joint objective function. It takes into account the distribution

of the data in the spectral space when finding the regions or contexts, and not only the convex

geometry of the spectral unmixing as in [49]. CDSU achieves these two tasks by minimizing the

following objective function:

J =
C∑
i=1

N∑
j=1

umij (xj − ci)(xj − ci)
T

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi

M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T
]

(3.3)

subject to

uij ∈ [0, 1],∀i, j,
C∑
i=1

uij = 1,∀j, (3.4)
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and

pij ≥ 0, and 11×MpTij = 1,∀i, j. (3.5)

In the above, xj is a 1× d vector representing the jth pixel spectrum, C is a user-specified

constant that represents the number of contexts to be extracted, andM is the number of endmembers

for each context. In (3.3), pij is a 1×M vector representing the proportion values for pixel j with

respect to the ith context, and Ei is a M × d matrix such that each row of Ei, eik, is the 1 × d

vector representing the kth endmember in the ith context. The membership values, uij , indicate the

fuzzy degree to which the jth sample belongs to the ith context. Finally, α and β = [β1, ..., βC ] are

positive constants used to balance the three terms of the objective function.

The first term in (3.3) is an unsupervised learning component. It is the sum of intra-

cluster distances and is the objective function used in the Fuzzy C-Means (FCM) algorithm [72].

It seeks to partition the N samples into C clusters, and represent each cluster by a center ci.

Each sample xj will be assigned to each cluster i with a membership degree uij . In this term,

m ∈ (1,+∞) is used to control the degree of fuzziness [72]. The second and third terms in (3.3)

represent the spectral unmixing component. This component attempts to learn cluster-dependent

endmembers and abundances. The second term is the residual sum of squares (RSS) between

actual pixels and their estimates from the endmembers and abundances. The third term is the sum

of squared distances (SSD) between each pair of endmembers in an endmember set, representing

an approximation of the volume enclosed by these endmembers. Note that these last two terms

represent the objective function of the P-COMMEND algorithm [49] with the exception that we use

C balancing parameters βi (i = 1, ..., C), one for each context, unlike P-COMMEND which uses a

unique balancing parameter α. This allows for more flexibility since the simplexes in all contexts

may not be of equal volumes.

When all terms are combined and the parameters α and β are chosen properly, the algorithm

seeks to partition the data into compact clusters while learning the endmembers and abundances

for each cluster.

Using the matrix notation

M−1∑
k=1

M∑
l=k+1

(eik − eil)(eik − eil)
T = Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1, (3.6)
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the objective function in (3.3) can be rewritten as

J(Ei,Pi,U, ci) =
C∑
i=1

N∑
j=1

umij (xj − ci)(xj − ci)
T

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
. (3.7)

The goal is to identify the optimal endmember sets Ei = {eik, k = 1, ...,M}, i = 1, ..., C, the

proportion sets Pi = {pij , j = 1, ..., N}, i = 1, ..., C, the memberships U = [uij ]i=1,...,C;j=1,...,N and

the centers ci, i = 1, ..., C, that minimize (3.7) subject to (3.4) and (3.5).

Lagrange multipliers [83] is a powerful tool for solving optimization problems without the

need to explicitly solve the constraints and use them to eliminate extra variables. For the CDSU

optimization, we incorporate the constraints in (3.4) and (3.5) into the objective function in (3.7)

using Lagrange multipliers and obtain

L =
C∑
i=1

N∑
j=1

umij (xj − ci)(xj − ci)
T

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
−

N∑
j=1

λj

( C∑
i=1

uij − 1
)
−

C∑
i=1

N∑
j=1

γij(11×MpTij − 1)−
C∑
i=1

N∑
j=1

ξijp
T
ij , (3.8)

where Λ = [λ1, ..., λN ] is a vector of Lagrange multipliers corresponding to the N constraints on

the memberships uij in (3.4), Γ = [γ11, ..., γCN ], and Ξ = [ξ11, ..., ξCN ] are vectors of Lagrange

multipliers corresponding to the C ×N constraints on the proportions pij in (3.5).

The first-order necessary conditions theorem in [83] states that a local minimizer of the

objective function J necessarily satisfies the Karush-Kuhn-Tucker (KKT) conditions. The first-

order derivative of the Lagrangian L with respect to the minimizing variable evaluated at the local

minimizer is necessary equal to zero. Furthermore, the second-order sufficient conditions theorem

in [83] states that for a feasible variable, satisfying the KKT conditions, to be a local minimizer of

J , it is sufficient that the second-order derivative of the Lagrangian L with respect to this variable

is positive definite.

Theorem 3.2.1, the proof of which is given in Appendix A, gives the update equations for

the endmember sets, the proportion sets, the memberships, and the centers that minimize J .

Theorem 3.2.1. The first and second order conditions yield the following local minimizers of J :

Ei =

βi(MIM×M − 1M×M ) +

N∑
j=1

umijp
T
ijpij

−1  N∑
j=1

umijp
T
ijxj

 , (3.9)
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pTij = max

([
EiE

T
i

]−1[
Eix

T
j +

1− 11×M (EiE
T
i )−1Eix

T
j

11×M (EiET
i )−11M×1

1M×1

]
, 0

)
, (3.10)

uij =

[
(xj − ci)(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[(xj − cq)(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

, (3.11)

and

ci =

N∑
j=1

umijxj

N∑
j=1

umij

. (3.12)

By examining (3.11), we notice that a pixel j will have a high membership in cluster i if:

(i) its spectra is close to the centroid, ci, of that cluster in the feature space; and (ii) it fits the

endmember model of that cluster (i.e. small error of fit).

CDSU is an iterative algorithm that involves successive updates of the endmember proportion

sets Pi, the memberships U, the endmember sets Ei, and the clusters’ centers ci. It is summarized

in Algorithm 3.1.

Algorithm 3.1 Context Dependent Spectral Unmixing (CDSU)

Inputs: X: the data points (N × d).
C: the number of contexts.
M : the number of endmembers for each context.
m: the fuzzifier, m ∈ (1,+∞).
α: the weight of the second term in the objective function.
β: the vector of weights in the second term of the objective function (1× C).

Outputs: U: the fuzzy membership matrix of the data samples.
ci: the cluster centers.
Ei: the sets of endmembers in all clusters.
Pi: the sets of proportions in all clusters.

Initialize ci and Ei.
repeat

Update Pi using (3.10).
Update U using (3.11).
Update Ei using (3.9).
Update ci using (3.12).

until parameters do not change significatively
return U, ci, Ei, Pi

The CDSU algorithm is of linear time per iteration. It runs in O(C ×M × N) time per

iteration, where C is the number of contexts, M is the number of endmembers per context, and

N is the number of data points. In the current implementation of the algorithm, the centers are

initialized using the Fuzzy C-Means algorithm [72] (which is, in turn, randomly initialized), and the

endmember sets are initialized using the Minimum Volume Simplex Analysis (MVSA) algorithm [70].
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Furthermore, the convergence of the algorithm is checked by comparing the values of the objective

function from successive iterations. If the difference is below some threshold, the algorithm is

stopped.

3.3 Context Dependent Spectral Unmixing Using the Mahalanobis Distance

The current CDSU algorithm uses the Euclidean distance in the clustering component (first

term in (3.7)). As a result, it is restricted to identifying spherical clusters. Moreover, clustering

in a high dimensional space, as is the case of hyperspectral data, is a challenging task. Features

might not be equally important and some of them can be highly correlated. This may result in

non-spherical clusters.

In this section, we extend CDSU to use the Mahalanobis distance instead of the Euclidean

distance. This would allow more flexibility in the shape of the clusters instead of the traditional

spherical shape.

Using the same notation as in Section 3.2, the objective function becomes

JM (Ei,Pi,U, ci,Ai) =
C∑
i=1

N∑
j=1

umij (xj − ci)Ai(xj − ci)
T

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
, (3.13)

subject to (3.4), (3.5), and

det(Ai) = σi ∀i. (3.14)

In (3.13), Ai is a symmetric and positive definite matrix. Fixing the determinant of the

norm matrix Ai to a positive constant σi allows the algorithm to search for a cluster shape that fits

the data while preserving the volume of the cluster.

Theorem 3.3.1, the proof of which is given in Appendix B, gives the update equations of the

endmember sets, the proportions sets, the memberships, the centers, and the norm matrices that

minimize JM .

Theorem 3.3.1. Optimizing the objective function in (3.13) using the Lagrange multipliers method

leads to the same update equations for the endmember sets, the proportions, and the centers as for

CDSU using the Euclidean distance (equations (3.9), (3.10) and (3.12) respectively).

The update equation for the memberships, uij, becomes

uij =

[
(xj − ci)Ai(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[
(xj − cq)Aq(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T

] 1
1−m

. (3.15)
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Finally, the update equation for the norm matrices, Ai, is

Ai = [σidet(Ci)]
1
dC−1i , (3.16)

where

Ci =

N∑
j=1

umij (xj − ci)
T (xj − ci)

N∑
j=1

umij

(3.17)

is the fuzzy covariance matrix of cluster i.

Observing (3.15), we notice that a pixel j will have a high membership in cluster i if: (i) its

spectra has a small Mahalanobis distance to the centroid, ci, of that cluster in the feature space;

and (ii) it fits the endmember model of that cluster.

The norm matrices Ai in (3.16) are a function of the inverse of the fuzzy covariance matrices

Ci. This allows CDSU to account for the shape of the data by normalizing by the variances of each

dimension.

The resulting Context Dependent Spectral Unmixing using the Mahalanobis distance (CDSUM)

is an iterative algorithm that uses alternating optimization. It involves successive updates of the

endmember proportions pij , the memberships uij , the endmember sets Ei, the cluster centers ci,

and the norm matrices Ai, until stabilization. It is summarized in Algorithm 3.2.

3.4 Semi-supervised Context Dependent Spectral Unmixing

Spectral unmixing is a challenging, ill-posed, inverse problem that may result in infinitely

many solutions, most of which are meaningless. Moreover, context dependent spectral unmixing

is based in part on clustering. However, clustering itself is a challenging task, especially in a high

dimensional feature space as is the case of hyperspectral data. Many local minima solutions may

exist.

To overcome this problem, we propose two semi-supervised algorithms of CDSUM. The

approaches use partial supervision to help guide the search process and narrow the space of possible

solutions. The supervision information consists of a small set of pairwise constraints which can be

obtained from multiple sources of information.

The first algorithm, called Cluster Constrained Multi-Model Unmixing (CC-MMU) [55],

uses constraints on the cluster assignments of the pixels. The second algorithm, called Proportion

Constrained Multi-Model Unmixing (PC-MMU), uses constraints on the proportion values of the

pixels.
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Algorithm 3.2 Context Dependent Spectral Unmixing using the Mahalanobis Distance (CDSUM)

Inputs: X: the data points (N × d).
C: the number of contexts.
M : the number of endmembers for each context.
m: the fuzzifier, m ∈ (1,+∞).
α: the weight of the second term in the objective function.
β: the vector of weights in the second term of the objective function (1× C).
σi > 0, i = 1..C: the determinants of the norm matrices.

Outputs: U: the fuzzy membership matrix of the data samples.
ci: the cluster centers.
Ei: the sets of endmembers in all clusters.
Pi: the sets of proportions in all clusters.
Ai: the norm matrices for all clusters.

Initialize ci, Ai and Ei.
repeat

Update Pi using (3.10).
Update U using (3.15).
Update Ei using (3.9).
Update ci using (3.12).
Update Ai using (3.16) and (3.17).

until parameters do not change significatively
return U, ci, Ei, Pi, Ai

3.4.1 Cluster Constrained Multi-Model Unmixing

CC-MMU uses constraints on the cluster assignments of the pixels. We assume that we

dispose of two sets of constraints: a set of should-link pairs, S, such that (j, k) ∈ S means that

xj and xk should be assigned to the same cluster, and a set of should not-link pairs, N , such that

(j, k) ∈ N means that xj and xk should not be assigned to the same cluster. Each should-link and

should not-link constraint has a violation cost ρjk. The constraints and their costs can be obtained

by labeling few pixels in the hyperspectral image or by using information extracted from a different

sensor.

Following the same notation as in Section 3.3, the proposed CC-MMU minimizes the follow-

ing objective function:

JC(Ei,Pi,U, ci,Ai) =
C∑
i=1

N∑
j=1

umij (xj − ci)Ai(xj − ci)
T

+γ
( ∑

(j,k)∈S

C∑
i=1

C∑
l=1,l 6=i

ρjku
m
iju

m
lk +

∑
(j,k)∈N

C∑
i=1

ρjku
m
iju

m
ik

)
+α

C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
, (3.18)

subject to the constraints in (3.4), (3.5) and (3.14). γ is a positive constant.

In addition to the terms of the CDSUM objective function described in Section 3.3, the
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objective function of CC-MMU contains a semi-supervision term which would equal to zero when

none of the defined should-link and should not-link constraints are violated.

We optimize (3.18) with respect to the centers ci, the memberships uij , the norm matri-

ces Ai, the proportions pij and the endmembers Ei, using the Lagrange multipliers optimization

method.

Theorem 3.4.1, the proof of which is given in Appendix C, gives the update equations of the

local minimizers of JC .

Theorem 3.4.1. The update equations for the endmember sets, the abundances, the centers and

the norm matrices are similar to the ones of CDSUM (equations (3.9), (3.10), (3.12) and (3.16)

respectively).

The update equation for the memberships becomes

uij =

[
d2ij + γcostij + αfitij

] 1
1−m

C∑
q=1

[
d2qj + γcostqj + αfitqj

] 1
1−m

, (3.19)

where

d2ij = (xj − ci)Ai(xj − ci)
T , (3.20)

costij =
∑

(j,k)∈S

C∑
l=1,l 6=i

ρjku
m
lk +

∑
(j,k)∈N

ρjku
m
ik, (3.21)

and

fitij = (xj − pijEi)(xj − pijEi)
T . (3.22)

In (3.19), d2ij represents the squared Mahalanobis distance between pixel j and the center

of cluster i, costij represents the cost of violating the constraints related to pixel j with respect to

cluster i, and fitij represents the squared error of fit of pixel j to the convex model i. Examining

(3.19), we notice that a pixel j will have a high membership in cluster i if: (i) its spectrum is close

to the centroid, ci, of that cluster in the spectral space; (ii) it does not violate many constraints

that involve it; and (iii) it fits the model of that cluster.

The resulting CC-MMU is an iterative algorithm that uses alternating optimization. It in-

volves successive updates of the norm matrices Ai, the endmember proportions pij , the memberships

uij , the endmember sets Ei, and the clusters’ centers ci, until stabilization. It is summarized in

Algorithm 3.3.
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Algorithm 3.3 Cluster Constrained Multi-Model Unmixing (CC-MMU)

Inputs: X: the data points (N × d).
C: the number of contexts.
M : the number of endmembers for each context.
m: the fuzzifier, m ∈ (1,+∞).
α: the weight of the second term in the objective function.
β: the vector of weights in the second term of the objective function (1× C).
σi > 0, i = 1..C: the determinants of the norm matrices.
γ > 0: the weight of the semi-supervised term.
S: the set of should-link constraints.
N : the set of should not-link constraints.
ρjk > 0, ∀(j, k) ∈ S or N : the constraints violation costs.

Outputs: U: the fuzzy membership matrix of the data samples.
ci: the cluster centers.
Ei: the sets of endmembers in all clusters.
Pi: the sets of proportions in all clusters.
Ai: the norm matrices for all clusters.

Initialize ci, Ai and Ei.
repeat

Update Pi using (3.10).
Update U using (3.19), (3.20), (3.21) and(3.22).
Update Ei using (3.9).
Update ci using (3.12).
Update Ai using (3.16) and (3.17).

until parameters do not change significatively
return U, ci, Ei, Pi, Ai

3.4.2 Proportion Constrained Multi-Model Unmixing

PC-MMU uses constraints on the proportion values of the pixels. We assume that we dispose

of a set of pixel pairs, S, such that (j, k) ∈ S means that xj and xk should have similar proportion

values in the extracted endmembers. Each constraint has a violation cost ρjk. The constraints and

their costs can be obtained through some ground truth knowledge or through consensus unmixing

as will be shown in the next chapter.

Following the same notation as in Section 3.3, the proposed PC-MMU minimizes the follow-

ing objective function:

JP (Ei,Pi,U, ci,Ai) =
C∑
i=1

N∑
j=1

umij (xj − ci)Ai(xj − ci)
T + γ

∑
(j,k)∈S

ρjk
C∑
i=1

‖pij − pik‖2

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
, (3.23)

subject to the constraints in (3.4), (3.5) and (3.14). γ is a positive constant.

In addition to the terms of the CDSUM objective function described in Section 3.3, the

objective function of PC-MMU contains a semi-supervision term which would equal to zero when

35



none of the defined proportion constraints are violated.

We optimize (3.23) with respect to the centers ci, the memberships uij , the norm matri-

ces Ai, the proportions pij and the endmembers Ei, using the Lagrange multipliers optimization

method.

Theorem 3.4.2, the proof of which is given in Appendix D, gives the update equations of the

local minimizers of JP .

Theorem 3.4.2. The update equations for the endmember sets, the memberships, the centers and

the norm matrices are similar to the ones of CDSUM (equations (3.9), (3.15), (3.12) and (3.16)

respectively).

The update equation for the proportions becomes

pTij = max

[2αumijEiE
T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik + ξij1M×1

]
, 0

 , (3.24)

where

ξij =

1− 11×M

[
2αumijEiE

T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik

]
11×M

[
2αumijEiET

i + γ
∑

(j,k)∈S
ρjk

]−1
1M×1

. (3.25)

The resulting PC-MMU is an iterative algorithm that uses alternating optimization. It

involves successive updates of the norm matrices Ai, the proportions pij , the memberships uij , the

endmember sets Ei, and the clusters’ centers ci, until stabilization. It is summarized in Algorithm

3.4.

3.5 Robust Context Dependent Spectral Unmixing

One limitation of most multiple model unmixing methods is their sensitivity to noise and

outliers due to scene and/or sensor effects [84]. This limitation is inherited from the fuzzy clustering

approach used to learn the multiple convex sets. Noise points affect not only the convex sets, but

also the estimates of the endmembers and proportions within each set.

Possibilistic clustering [85] has been proposed to overcome the sensitivity of fuzzy clustering

to noise. This approach uses possibilistic membership functions to identify and reduce the effect of

noise points. Possibilistic memberships may however result in identical clusters. Recent approaches

combine fuzzy and possibilistic memberships to avoid such problems [53].

In this section, we propose using both fuzzy and possibilistic membership functions to develop

a robust multi-model unmixing algorithm. Fuzzy memberships are used to partition the spectra space
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Algorithm 3.4 Proportion Constrained Multi-Model Unmixing (PC-MMU)

Inputs: X: the data points (N × d).
C: the number of contexts.
M : the number of endmembers for each context.
m: the fuzzifier, m ∈ (1,+∞).
α: the weight of the second term in the objective function.
β: the vector of weights in the second term of the objective function (1× C).
σi > 0, i = 1..C: the determinants of the norm matrices.
γ > 0: the weight of the semi-supervised term.
S: the set of proportion constraints.
ρjk > 0, ∀(j, k) ∈ S: the constraints violation costs.

Outputs: U: the fuzzy membership matrix of the data samples.
ci: the cluster centers.
Ei: the sets of endmembers in all clusters.
Pi: the sets of proportions in all clusters.
Ai: the norm matrices for all clusters.

Initialize ci, Ai and Ei.
repeat

Update Pi using (3.24).
Update U using (3.15).
Update Ei using (3.9).
Update ci using (3.12).
Update Ai using (3.16) and (3.17).

until parameters do not change significatively
return U, ci, Ei, Pi, Ai

into multiple convex sets that span the entire space and avoid coincident clusters [72]. Possibilistic

memberships are used to reduce the effect of noise and obtain robust estimates of the endmembers

and proportions within each cluster.

The Robust Context Dependent Spectral Unmixing (RCDSU) combines fuzzy and possibilis-

tic clustering with linear unmixing into a joint objective function. The clustering component is used

to partition the data into multiple contexts. The linear unmixing component learns endmembers and

abundances within each context. Following the same notation as in Section 3.3, RCDSU minimizes

JR(Ei,Pi,U,T, ci,Ai) =
C∑

i=1

N∑
j=1

(aum
ij + btnij)(xj − ci)Ai(xj − ci)

T +
C∑

i=1

ηi
N∑

j=1

(1− tij)n

+α
C∑

i=1

[ N∑
j=1

(aum
ij + btnij)(xj − pijEi)(xj − pijEi)

T + βi(Mtrace(ET
i Ei)− 11×MEiE

T
i 1M×1)

]
, (3.26)

subject to the constraints in (3.4), (3.5), (3.14), and

tij ∈ [0, 1],∀i, j. (3.27)

The first and second terms in (3.26) represent the unsupervised learning component. They seek

to partition the N samples into C clusters, and represent each cluster by a center ci and a norm

matrix Ai. Each sample xj will be assigned to each cluster i with two types of memberships. The
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fuzzy membership [72], uij , is the degree with which pixel j belongs to cluster i; and the possibilistic

membership [85], tij , is the possibility or typicality that pixel j belongs to cluster i. The memberships

are weighted by two positive constants, a and b (with a+ b = 1), that control the prevalence of each

membership for the task at hand. The constants m and n ∈ (1,+∞) are the fuzzifiers [72] for both

memberships. The second term in (3.26) forces the possibilistic memberships, tij , to be as large as

possible, thus avoiding the trivial solution of having them all equal to zero.

The third and fourth terms in (3.26) represent the spectral unmixing component and are

similar to the ones of CDSU. Finally, η = [η1, ..., ηC ] are positive values.

We optimize (3.26) with respect to all parameters using the Lagrange multipliers optimiza-

tion method. Theorem 3.5.1, the proof of which is given in Appendix E, gives the update equations

of the local minimizers of JR.

Theorem 3.5.1. The update equations for the proportions and the memberships are similar to the

ones of CDSUM (equations (3.10) and (3.15) respectively).

The update equation for the endmember sets, Ei, is

Ei =

[
βi(MIM×M − 1M×M ) +

N∑
j=1

(aum
ij + btnij)p

T
ijpij

]−1 [ N∑
j=1

(aum
ij + btnij)p

T
ijxj

]
. (3.28)

The update equation for the norm matrices, Ai, is the same as in equation (3.16), but with

Ci =

N∑
j=1

(aumij + btnij)(xj − ci)
T (xj − ci)

N∑
j=1

(aumij + btnij)

. (3.29)

The update equation for the typicalities, tij, is given by

tij =
1

1 +
[
b
costij
ηi

] 1
n−1

, (3.30)

where

costij = (xj − ci)Ai(xj − ci)
T + α(xj − pijEi)(xj − pijEi)

T . (3.31)

Finally, the update equation of the cluster centers ci is

ci =

N∑
j=1

(aumij + btnij)xj

N∑
j=1

(aumij + btnij)

. (3.32)

Unlike the fuzzy memberships, the possibilistic memberships are not constrained to sum to

one. They provide an intuitive notion of typicality. Note that the larger costij is, the smaller the
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typicality of pixel j in cluster i. This means that a pixel that is far from any cluster and that

does not fit any convex model would have small typicality values in all clusters, and hence can be

considered as an outlier or a noise point. The value of ηi determines when the membership of a

point in cluster i becomes 0.5 (i.e., the 3 dB point). Thus, it needs to be chosen depending on the

desired “bandwidth” of the membership distribution for that cluster.

The resulting RCDSU is an iterative algorithm that uses alternating optimization. It involves

successive updates of the endmember proportions pij , the fuzzy memberships uij , the possibilistic

memberships tij , the endmember sets Ei, the cluster centers ci, and the norm matrices Ai, until

convergence. It is summarized in Algorithm 3.5.

Algorithm 3.5 Robust Context Dependent Spectral Unmixing (RCDSU)

Inputs: X: the data points (N × d).
C: the number of contexts.
M : the number of endmembers for each context.
m, n: the fuzzifier, m, n ∈ (1,+∞).
α: the weight of the second term in the objective function.
β: the vector of weights in the second term of the objective function (1× C).
σi > 0, i = 1..C: the determinants of the norm matrices.
a, b: weights of the fuzzy and possibilistic memberships (a+ b = 1).

Outputs: U: the fuzzy membership matrix of the data samples.
T: the possibilistic membership matrix of the data samples.
ci: the cluster centers.
Ei: the sets of endmembers in all clusters.
Pi: the sets of proportions in all clusters.
Ai: the norm matrices for all clusters.

Initialize ci, Ai and Ei.
repeat

Update Pi using (3.10).
Update U using (3.15).
Update T using (3.30) and (3.31).
Update Ei using (3.28).
Update ci using (3.32).
Update Ai using (3.16) and (3.29).

until parameters do not change significatively
return U, T, ci, Ei, Pi, Ai

3.6 Unsupervised Robust Context Dependent Spectral Unmixing

The proposed RCDSU algorithm, like other multi-model unmixing algorithms, assumes that

the optimal number of endmember sets is known. However, this may not be the case, and it should

be learned from the data. In this section, we extend RCDSU to find the “optimal” number of

contexts in an unsupervised way.
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Our approach is inspired by [86] and explores properties of the possibilistic membership

functions. First, we overspecify the number of clusters C and run the RCDSU algorithm. Second,

we ignore the fuzzy memberships (by setting a to 0 and b to 1) and run RCDSU to allow clusters

to expand over neighboring regions. Since the possibilistic memberships are not constrained, small

clusters covering the same dense regions would expand and become similar. Finally, we use a

similarity measure to identify similar clusters and merge them. We use

Sij = 1−

N∑
k=1

|tik − tjk|

N∑
k=1

tik +
N∑

k=1

tjk

. (3.33)

Sij does not depend on the distance measure explicitly, and therefore, it can be used independently

of the clusters shape and size. More importantly, it does take into account the model fitting error

(used implicitly in the memberships). It can be easily shown that 0 ≤ Sij ≤ 1, where Sij = 1 when

clusters i and j are identical, and Sij = 0 when the clusters are disjoint.

The Unsupervised RCDSU (U-RCDSU) is summarized in Algorithm 3.6. We should point

out here that even when the number of clusters is known a priori, it is recommended to overspecify

the number of clusters. This makes the results less sensitive to initialization and gives tiny clusters

(compared to other clusters) a better chance of being detected.
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Algorithm 3.6 Unsupervised Robust Context Dependent Spectral Unmixing (U-RCDSU)

Inputs: X: the data points (N × d).
C = Cmax: the over-specified number of clusters.
M : the number of endmembers for each context.
m, n: the fuzzifier, m, n ∈ (1,+∞).
α: the weight of the second term in the objective function.
β: the vector of weights in the second term of the objective function (1× C).
σi > 0, i = 1..C: the determinants of the norm matrices.
a, b: weights of the fuzzy and possibilistic memberships (a+ b = 1).

Outputs: U: the fuzzy membership matrix of the data samples.
T: the possibilistic membership matrix of the data samples.
ci: the cluster centers.
Ei: the sets of endmembers in all clusters.
Pi: the sets of proportions in all clusters.
Ai: the norm matrices for all clusters.

Initialize ci, Ai and Ei.
[U,T, ci,Ai,Ei,Pi] = RCDSU(ci,Ai,Ei).
Set a to 0, b to 1.
repeat

[U,T, ci,Ai,Ei,Pi] = RCDSU(ci,Ai,Ei).
for each pair of clusters i and j do

Compute Sij using (3.33).
if Sij ≥ 1− ε then

Merge clusters i and j.
end if

end for
if a merging occured then

Update C, ci and Ai.
Initialize Ei.

end if
until no merging takes place
Reset a and b.
[U,T, ci,Ai,Ei,Pi] = RCDSU(ci,Ai,Ei).
return U, T, ci, Ei, Pi, Ai

41



CHAPTER 4

ROBUST UNMIXING USING CONSENSUS ANALYSIS

Spectral unmixing is a challenging, ill-posed, inverse problem. Many algorithms have been

proposed for robust, stable, and accurate unmixing solutions. Different algorithms have different

modes of operation and usually yield different results. Moreover, most of them require specifying

the number of endmembers to be extracted before hand. In Chapter 3, we have proposed various

algorithms that can identify endmembers while taking the distribution of the data into account. In

this chapter, we propose using consensus analysis on multiple unmixing results to find the “optimal”

endmembers in the data. We run different unmixing algorithms, using different numbers of end-

members, and combine the results using consensus analysis. The claim is that actual endmembers

will have a consensus among all runs. This chapter is organized as follows. First, we present the

motivation behind the proposed idea. Then, we outline the proposed consensus unmixing approach.

4.1 Motivations

Many unmixing algorithms exist in the literature [29] and different algorithms often result

in different endmembers for the same data. Moreover, the same algorithm may not result in the

same endmembers when run multiple times. This is mainly due to the non-deterministic behavior

of the algorithm. In fact, each method has its own assumptions and approach for estimating the

endmembers. The goal is to take advantage of this diversity to estimate the “optimal” endmembers

using consensus analysis.

The idea has its roots in consensus clustering [57], where different mechanisms are proposed

to explore the consensus between multiple data partitions. The idea of consensus analysis has

been investigated in [87] to estimate the number of endmembers. However, it did not take into

account different unmixing algorithms. In fact, a single algorithm is run multiple times using the

same number of endmembers, and the goal is to find the number that achieves the most stable

classification among all runs. In this chapter, we investigate using multiple algorithms with multiple

parameter settings to find an accurate and consistent set of endmembers in the data. The claim is
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Figure 4.1: First 3 PC of the data (blue), endmembers from all unmixing runs (red), and true
endmembers (green).

that “real” endmembers will have a consensus among multiple runs.

To illustrate the diversity of different unmixing results, we use a simulated hyperspectral data

of 2000 points generated according to equation (1.1), using 4 endmembers (Spessartine, Halloysite,

Chlorite and Lizardite) from the USGS digital spectral library [88]. The proportions are linearly

generated between 0 and 0.9 for each endmember. A zero-mean Gaussian noise at a signal-to-noise

ratio (SNR) of 20 dB was added to the data. For this example, we run ICE [61], VCA [66], PPI [59],

and N-FINDR [60] using a number of endmembers varying from 3 to 7, repeating each run 4 times

(giving a total of 80 runs). We also run U-RCDSU using Cmax = 5 with M = 2, 3, and 4 (we let

m = n = 1.5, a = b = 0.5, α = 100, βi = 4 ∀i, σi = 1 ∀i, and ε = 0.2), leading to 1 context every

time with 2, 3 and 4 endmembers each. In total, we have 83 endmember sets.

In figure 4.1, we scatter plot the first 3 principal components (PC) of the data in small

blue dots, the resulting endmembers from all runs in large red dots, and the true endmembers in

larger green dots. Since most unmixing methods are expected to identify reasonable endmembers

on most runs, we observe a concentration of estimated endmembers around the true endmembers.

This observation is explored to develop an approach for robust endmembers estimation.

4.2 Consensus Unmixing

Let X = {xj ∈ Rd, j = 1, ..., N} be the N spectral signatures obtained from a hyperspectral

image having d spectral bands. Let T be the total number of unmixings on X. The T unmixing
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results could be obtained by running different unmixing algorithms, one unmixing algorithm with

different parameters/initializations, or a combination of the two. Let Ei = {eik, k = 1, ...,Mi} be

the set of Mi endmembers resulting from unmixing i, i = 1, ..., T . Let Pi = {pjik, j = 1, ..., N ; k =

1, ...,Mi} be the set of proportions, pjik, of endmember k in pixel j resulting from unmixing i,

i = 1, ..., T .

The first step in our approach is to select a subset, H, of data points that are more likely to

inform us about the best locations of the endmembers. For each endmember eik, we form an αp-cut

set

(pik)αp = {j| pjik ≥ αp}. (4.1)

(pik)αp contains the indices of the points having proportion values, in endmember eik, that are

larger than αp.

For computational efficiency, we try to keep H as small as possible while maintaining di-

versity. Thus, if |(pik)αp | > Q, we select the top Q points having the largest proportion values.

Otherwise, we consider the entire set. We call these points with high proportions the voters to eik.

The subset H is the union of the voters to all endmembers in all runs:

H =
⋃
i,k

(pik)αp . (4.2)

The second step of our approach aims to reduce the size of H and keep only consistent voters.

In fact, H may include voters to endmembers that are not consistent. In order to filter those out, we

construct a co-association matrix [89], C, for the elements of H, and keep those with high association

values. The co-association matrix forms a voting mechanism that combines the unmixing results,

leading to a new measure of similarity between points. The h points in H are mapped into an h×h

co-association matrix C using

C(j, l) =
T∑
i=1

Mi∑
k=1

pjikplik (4.3)

In other words, if pixels j and l belong to the same “group” of endmembers, then they have high

proportion values in some common endmembers of that group. Hence, their co-association value

will be high. On the other hand, if pixels j and l do not share any endmember within the group,

then their co-association value will be low.

Using an αc-cut over C, we keep only points having high co-association values. As a result,

we obtain a smaller subset, Ha, of voters to mainly consistent endmembers:

Ha = (C)αc = {j, l| j 6= l and C(j, l) ≥ αc}. (4.4)
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Algorithm 4.1 Robust Unmixing Using Consensus Analysis

Input: {Pi = {pjik, j = 1..N ; k = 1..Mi}}Ti=1, Q, αp, αc
Output: Optimal endmembers in the data

(pik)αp = {j| pjik ≥ αp}, ∀i = 1, ..., T, k = 1, ...,Mi

H =
⋃
i,k

(pik)αp

C(j, l) =
T∑
i=1

Mi∑
k=1

pjikplik, ∀j, l ∈ H

Ha = (C)αc = {j, l| j 6= l and C(j, l) ≥ αc}
Ca(j, l) = C(j, l), ∀j, l ∈ Ha
Convert Ca to a dissimilarity D = exp

[
−Ca

max(Ca)

]
diag(D) = 0
Use a clustering algorithm to identify clusters within D
Select one endmember from each cluster (as the cluster representative)

The subset Ha can be used as the set of constraints for the Proportion Constrained Multi-Model

Unmixing (PC-MMU) algorithm proposed in Section 3.4.2.

The last step of our approach consists of identifying clusters within Ha. Each cluster rep-

resents a set of similar endmembers (estimated by the different algorithms/runs). We also estimate

the optimal number of clusters. Since Ha is expected to include a set of well-separated clusters,

various clustering algorithms could be used for this task. In our work, we report results using a

simple average link hierarchical clustering [90]. Since Ca, sub-matrix of C corresponding to Ha, is a

similarity matrix, we first convert it to a dissimilarity matrix D using

D = exp

[
−Ca

max(Ca)

]
. (4.5)

Furthermore, the diagonal elements of D are set to zeros, as they represent the dissimilarities of

identical points. Once the voters are clustered, a representative from each cluster is chosen to be

an endmember. Another approach would be to run an unmixing algorithm on this reduced subset

of voters, using the number of identified clusters as the number of endmembers. Algorithm 4.1

summarizes the proposed approach.
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CHAPTER 5

CONTEXT DEPENDENT HYPERSPECTRAL SUBPIXEL TARGET

DETECTION

In this chapter, we introduce a new class of subpixel target detection algorithms that use

a local structured background model. Our approach, referred to as Context Dependent Target

Detectors, extends existing structured detectors to multiple contexts. It is based on the robust

context dependent spectral unmixing algorithm, presented in Chapter 3, to model the background

variability. The claim is that robust context dependent unmixing provides a better description of

the background with minimum target leakage, compared to global unmixing, and hence results in

a better target-background separation. The approach is evaluated using the Adaptive Matched

Subspace Detector (AMSD) [76], the Orthogonal Subspace Projection (OSP) detector [76] and the

Hybrid Subspace Detector (HSD) [79].

5.1 Motivations

As mentioned in Section 2.2, target detection algorithms face the challenge of target leakage

into the background, which is the contribution of the target pixels to the background model. This

happens due to the presence of targets in the scene. An illustration of this is shown in figure 5.1.

The blue dots represent the data and form one convex set. The cyan dots represent noise points.

The red cross represents a pixel containing the target. A non robust unmixing algorithm will identify

the endmember set displayed by the red dots. In this case, the target will have a good fit in the

background model and may not be detected. A robust unmixing algorithm, on the other hand, will

ignore noise and target points and can identify the endmember set displayed by green dots. In this

case, the target does not fit the background model and can be easily detected.

The proposed robust context dependent spectral unmixing (RCDSU) algorithm, presented

in Section 3.5, can be used to solve this problem. In fact, targets can be thought of as noise points

or outliers not belonging to the background. They will be assigned low typicalities, meaning that

they will not contribute to the estimated endmembers. In other words, there will be no leakage from
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Figure 5.1: Target (red cross) leakage with non robust unmixing (red dots). No target leakage with
robust unmixing (green dots).

the target subspace to the background subspace, which is important in target detection [76].

Another challenge with existing target detection algorithms, that are based on the structured

background model, is that they usually use global methods to describe the background. Some of them

use eigenvector decomposition of the data correlation matrix, while others use unmixing algorithms

that find a single set of endmembers. These global methods may not provide a good description of

the hyperspectral data, especially when the scene includes multiple regions with distinct materials.

Hence, unmixing methods that can find multiple endmember sets are more appropriate.

This problem is illustrated in figure 5.2 using a 2 dimensional synthetic data. The blue points

represent the data that form two convex sets. The red cross represents a pixel containing the target.

The red dots represent the endmembers resulting from a typical single model unmixing algorithm.

If these endmembers were used to describe the background, the target pixel would be a normal

background pixel, and hence might not be detected. On the other hand, if a multi-model unmixing

algorithm was used, a typical result would be the 2 sets of endmembers displayed as green dots. In

this case, the target pixel will not fit the background model as it is located outside both convex

hulls.

To summarize, our motivations are two-fold. First, there is the need for a better background

description using multiple sets of endmembers. Second, there is the need to limit target leakage into

the background subspace. These can be accounted for using the proposed robust context dependent

spectral unmixing (RCDSU).

In the following, we assume that the multiple contexts have been identified using RCDSU.

Given a hyperspectral data, we will have the background endmember sets Ei, i = 1..C; the propor-
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Figure 5.2: Multiple endmember sets (green dots) versus a one global set (ref dots) for target (red
cross) detection.

tions sets Pi = {pij , j = 1..N}, i = 1..C; the fuzzy memberships U = {uij , i = 1..C, j = 1..N},

and the cluster centers ci, i = 1..C.

5.2 Context Dependent Target Detectors

In this section, we extend the AMSD [76], OSP [76] and HSD [79] to multiple contexts using

RCDSU. A test pixel, xj , will be assigned a local detection statistic within each context i, and these

local statistics will be combined using the pixel’s fuzzy memberships resulting from RCDSU, uij , to

produce one confidence value. In the following, st denotes the spectral signature of the target that

we are trying to detect.

5.2.1 Context Dependent AMSD

The Context Dependent AMSD (CD-AMSD) extends the AMSD to multiple local endmem-

ber sets. Given a test pixel xj in the data, the detection confidence value is computed as

TCD-AMSD(xj) =
C∑
i=1

uij
xjP

⊥
bix

T
j

xjP⊥Six
T
j

, (5.1)

where P⊥bi = I−ET
i (EiE

T
i )−1Ei is the orthogonal projection error matrix on the local background

subspace Ei resulting from RCDSU, and P⊥Si = I−STi (SiS
T
i )−1Si is the orthogonal projection error

matrix on the local composite target and background subspace Si = [st; Ei].

5.2.2 Context Dependent OSP Detector

The Context Dependent OSP (CD-OSP) detector provides a local approach to the traditional

OSP detector. The detection statistics are computed within each context, and combined using the
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fuzzy memberships of the test pixel in all sets, i.e.,

TCD-OSP(xj) =
C∑
i=1

uijstP
⊥
bix

T
j , (5.2)

where P⊥bi is the same as in (5.1).

5.2.3 Context Dependent HSD

The Context Dependent HSD (CD-HSD) extends the HSD to multiple local background

subspaces using

TCD-HSD(xj) =
C∑
i=1

uij
(xj − pbijEi)Γ

−1
i (xj − pbijEi)

T

(xj − psijSi)Γ
−1
i (xj − psijSi)T

. (5.3)

In (5.3), Ei is the ith endmember set resulting from RCDSU, and Si = [st; Ei] is the ith local

composite target and background subspace. pbij and psij are the proportions of the jth test pixel

in the local background subspace Ei, and local composite target and background subspace Si,

respectively. pbij results from RCDSU and psij is computed by plugging the composite target and

background subspace Si, instead of Ei, in the update equation (3.10) of the proportions of CDSU.

The covariance matrix of context i, Γi, is estimated using

Γi =

N∑
j=1

(aumij + btnij)(xj − ci)
T (xj − ci)

N∑
j=1

(aumij + btnij)

, (5.4)

which is already determined by RCDSU to compute the norm matrices Ai.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter presents the experimental results of the proposed algorithms on synthetic and

real hyperspectral data. The experiments were ran using MATLAB R2011a on a computer equipped

with a 3.6 GHz Intel Xeon processor and a 24 GB RAM. First, we present the data sets to be used

in the experiments, then we present the results of the different algorithms on these data sets.

6.1 Data sets

Two kinds of data sets are used in the experiments: simulated and real data. Simulated

data are used to prove the concepts of the proposed algorithms. Real data, on the other hand, are

used to test the proposed methods in real case scenarios.

6.1.1 Simulated data

Two categories of simulated data are used: 2-dimensional and synthetic hyperspectral data.

6.1.1.1 Two-dimensional data

Three data sets were used as motivational examples in Section 3.1. These are:

• D2C1M3 in Section 3.1.1: it forms one convex set with 3 endmembers,

• D2C2M3 in Section 3.1.2: it forms two convex sets with 3 endmembers each, and

• D2C3M3 in Section 3.1.3: it forms three convex sets with 3 endmembers each.

Another 2-dimensional data set is generated to prove the concept of the CDSUM algorithm:

• D2EC2M3: it includes 2 elongated convex sets generated using the linear model of equation

(1.1) with 3 endmembers for each set. The data is shown in figure 6.1. Each cluster contains

2000 points.
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Figure 6.1: The D2EC2M3 synthetic data with two elongated convex hulls.

Figure 6.2: USGS spectra used to generate the synthetic hyperspectral data

6.1.1.2 Synthetic hyperspectral data

These are generated using the United States Geological Survey (USGS) digital spectral

library [88]. The library contains spectra of 423 minerals, 17 plants and some miscellaneous materials.

The spectra have 224 spectral bands, spanning the 0.383 - 2.508 µm wavelength range. The minerals

Spessartine, Halloysite, Chlorite, Rectorite, Lizardite, Kaolinite and Teepleite, shown in figure 6.2,

are used to generate the data. A total of seven data sets are generated:

• Usgs1C2M3: it has two convex sets. Each convex set is generated using the linear model

in (1.1), using three different endmembers. Spectra of the minerals Spessartine, Halloysite,
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Chlorite, Rectorite, Lizardite and Kaolinite are used to generate 1000 spectral signatures.

The first three endmembers are used to generate the first convex region, and the last three

endmembers are used to generate the second one, each having 500 points. The proportions

for each data point are generated by sampling from a standard uniform distribution and are

normalized to sum to one. Zero-mean Gaussian noise is added to the simulated spectra at three

noise levels resulting in 3 data sets. The noise levels are adjusted by changing the variance of

the Gaussian to obtain Signal to Noise Ratios (SNR) of 20 dB, 30 dB and 50 dB for the three

levels. The SNR is defined using the logarithmic decibel scale as:

SNR = 10 log10

(
Pdata
Pnoise

)
, (6.1)

where Pdata is the average power of the data, and Pnoise is the average power of the noise.

• Usgs2C2M3: it has two convex sets. Each convex set is generated using the linear model

in (1.1), using three different endmembers. The six selected endmembers correspond to the

minerals Spessartine, Halloysite, Chlorite, Rectorite, Kaolinite and Teepleite. The first three

endmembers are used to generate the first convex region, and the last three endmembers are

used to generate the second one, each having 1000 points. The proportions were randomly

generated from a standard uniform distribution and were normalized to sum to one. We

randomly select few points from each set and add a zero-mean Gaussian noise to them, at a

signal to noise ratio (SNR) of 1 dB. We experiment with noise levels of 0%, 5% and 10%.

• Usgs3C1M4: it has one convex set of 2000 points generated according to equation (1.1),

using 4 endmembers (Spessartine, Halloysite, Chlorite and Lizardite). The proportions are

linearly generated between 0 and 0.9 for each endmember. A zero-mean Gaussian noise at

a signal-to-noise ratio (SNR) of 20 dB was added to the data. This data has been used in

Section 4.1 as a motivational example for the robust unmixing using consensus analysis.

6.1.2 Real data

Three real data sets were used in the experiments: the Pavia University data, the University

of Southern Mississippi data and the Indian Pines data:

• Pavia University data: the data was collected on July 8, 2002 over an urban area around the

Pavia University in northern Italy, using the Reflective Optics System Imaging Spectrometer1

1Data available at http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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(a) RGB image (b) Ground truth image

Figure 6.3: Pavia University data

(ROSIS). The ROSIS sensor collects data over the 430 - 860 nm wavelength range at a 4 nm

spectral sampling interval. The image originally contains 610× 340 pixels having 103 spectral

bands each (430 - 838 nm), with a spatial resolution of 1.3 meters. The scene consists of both

natural and urban regions as shown in figure 6.3(a). Ground truth labels are provided for some

areas of the scene. Nine classes are defined: asphalt, meadows, gravel, trees, painted metal

sheets, bare soil, bitumen, self-blocking bricks and shadows. Figure 6.3(b) shows the labeled

pixels of this image.

• University of Southern Mississippi data: Two data sets are available for this site [91].

The first one is a LIDAR image acquired using an Optech Inc. Gemini Airborne Topographic

LIDAR Mapper (ALTM) system. The second one is a hyperspectral image acquired using

an ITRES Inc. hyperspectral Compact Airborne Spectrographic Imager (CASI-1500), which

measured reflectance in 72 spectral bands across the Visible and Near-Infrared (VISNIR)

wavelengths (375 - 1050 nm) at a 10 nm resolution. The first 4 bands were removed due to

the presence of negative values, leaving 68 bands. Both data sets were geometrically corrected

to be co-registered with 1m× 1m pixels. The images, originally of size 325× 337 pixels, were
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Figure 6.4: RGB image of the University of Southern Mississippi data

acquired over the campus of the University of Southern Mississippi in Gulfport, Mississippi, in

November 2010. The scene consists of both natural and urban regions as shown in figure 6.4.

• Indian Pines data: the data1 consists of a 145 × 145 pixels image, having 224 spectral

bands covering the 0.4 - 2.5 µm wavelength range. It was collected by the AVIRIS sensor over

the Indian Pines test site in North-western Indiana. The scene, shown in figure 6.5, contains

two-thirds agriculture, and one-third forest or other natural perennial vegetation. There are

two major dual lane highways, a rail line, as well as some low density housing, other built

structures, and smaller roads. The number of bands was reduced to 200 by removing bands

covering the region of water absorption (bands 104 - 108, 150 - 163, and 220).

6.2 Context Dependent Spectral Unmixing

In this section, we present the results of the proposed CDSU algorithm on synthetic and real

data sets. We also provide a comparison to the results of the P-COMMEND algorithm. For consis-

tency, both algorithms were initialized similarly. The parameters were experimentally determined

for both algorithms.

1Data available at http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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Figure 6.5: RGB image of the Indian Pines data

6.2.1 Evaluation using simulated data

First, we present the results of our proposed approach on the three toy data sets (D2C1M3,

D2C2M3 and D2C3M3) described in Section 3.1. We then apply our method to the Usgs1C2M3

simulated hyperspectral data sets described in Section 6.1.1.2. Due to the simplicity of the toy data

sets, the performance of the algorithms is evaluated visually. However, for the simulated data set,

the performance is evaluated quantitatively.

In the first example, we use the D2C1M3 data set of Section 3.1.1 (displayed in figure

3.1(a)). The result of the CDSU algorithm on this data set, using C = 1, M = 3, m = 2, α = 1, and

β = 0.01 is shown in figure 6.6, where the detected endmembers are shown in red X’s. As it can be

seen, the CDSU algorithm succeeded in identifying endmembers at the vertices of the convex hull

enclosing the data points providing a tight fit around them.

As a second example, we use the D2C2M3 data set of Section 3.1.2 (displayed in figure

3.2(a)). The result of the CDSU algorithm on this data set, using C = 2, M = 3, m = 2, α = 20

(α has been increased, compared to D2C1M3, in order to account for the greater number of data

points in D2C2M3), and β = [0.01, 0.01] is shown in figure 6.7. The detected endmembers are

shown in red X’s for one cluster and in green X’s for the other cluster. As it can be seen, the CDSU

algorithm succeeded in identifying endmember sets at the vertices of the convex hulls enclosing the
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Figure 6.6: Result of the CDSU algorithm on the D2C1M3 data.

Figure 6.7: Result of the CDSU algorithm on the D2C2M3 data.

data points and thus, providing a tight fit around them.

For a third example, we use the D2C3M3 data set of Section 3.1.3 (displayed in figure

3.3(a)). The result of the CDSU algorithm on this data set, using C = 3, M = 3, m = 2, α = 50

(α has been increased, compared to D2C2M3, in order to account for the greater number of data

points in D2C3M3), and β = [0.1, 0.1, 0.1] (β has been increased, compared to D2C1M3 and

D2C2M3, in order to account for the tighter nature of the data in D2C3M3) is shown in figure

6.8. The identified clusters are represented using different colors, and the endmembers for each

cluster are represented using X’s. As it can be seen, the CDSU algorithm succeeded in identifying

endmember sets at the vertices of the convex hulls enclosing the data points, providing a tight fit

around them. It also provided clusters that match the distribution of the data.

For a forth example, we consider the Usgs1C2M3 simulated hyperspectral data set de-

scribed in Section 6.1.1.2. To evaluate the performance of the CDSU algorithm and compare it

to P-COMMEND, the estimated abundance fractions and endmembers are compared to the true
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Figure 6.8: Result of the CDSU algorithm on the D2C3M3 data.

ones. Based on the mean square error (MSE), we define the spectral mean error (SME) and the

abundance mean error (AME) as

SME ≡ 1

Md
‖E− Ê‖2F , (6.2)

and

AME ≡ 1

MN
‖P− P̂‖2F . (6.3)

In (6.2) and (6.3), M is the total number of endmembers, d is the number of spectral bands, and N

is the number of data points. The rows of E and Ê represent the true endmembers and the learned

endmembers respectively. P is a N ×M matrix representing the true endmember abundance frac-

tions. P̂ is a N ×M matrix representing the estimated endmember abundance fractions, where each

proportion value is multiplied by the corresponding cluster membership. The notation ‖.‖F stands

for the Frobenius norm.

Another common performance metric is the spectral angle distance, which measures the angle be-

tween a signature ei and its estimate êi [1]. Based on this metric, we define a spectral mean angle

error (SMAE) as

SMAE ≡

√√√√ 1

M

M∑
i=1

[
arccos

(
eiêTi
‖ei‖‖êi‖

)]2
. (6.4)

It is clear that the performance of the algorithms increases as SME, AME, and SMAE approach

zero. Notice, however, that the estimates of E and P are up to a permutation matrix. Thus, a simple

algorithm based on the Hungarian method [92] has been designed and used to infer the permutation

matrix.

We run the CDSU and P-COMMEND algorithms using the parameters in table 6.1. We run each
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TABLE 6.1

Parameters used for the CDSU and P-COMMEND algorithms on the USGS simulated hyperspectral
data

Parameters CDSU P-COMMEND
C 2 2
M 3 3
m 1.25 1.25
α, β α = 200, β = [0.1, 0.1] α = 0.1

Stopping criterion
(Iter = Iteration number)

abs
(
JCDSU (Iter+1)−JCDSU (Iter)

JCDSU (Iter+1)

)
< 10−6 abs

(
JPCOMMEND(Iter+1)−JPCOMMEND(Iter)

JPCOMMEND(Iter+1)

)
< 10−6

algorithm 25 times at each noise level. For each run, we use the FCM [72] and MVSA [70] al-

gorithms for the initialization of the memberships, centers and endmembers. This experiment is

designed to test the sensitivity of CDSU to noise and initialization, and to provide a comparison to

P-COMMEND.

Figures 6.9(a), (b) and (c) show a box plot of the different error metrics of both CDSU and P-

COMMEND algorithms across the 25 runs and at all noise levels. On each box, the central red

mark represents the median value, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme values not considered outliers, and outliers are plotted indi-

vidually using red crosses. An outlier is a value smaller than the first quartile minus 1.5 times the

interquartile range (third minus first quartile), or higher than the third quartile plus 1.5 times the

interquartile range.

Examining these results, we can see that, for low noise level cases (SNR = 30 and 50 dB), CDSU and

P-COMMEND perform similarly. Both algorithms are also robust to initialization. As we increase

the noise level (SNR = 20 dB), CDSU starts to outperform P-COMMEND (p-value=1.4e-09 using

the Wilcoxon rank sum test [93]). An explanation for this would be that the clustering term of the

CDSU objective function makes it more robust to noise than P-COMMEND, since noise does not

affect clustering as much as it would affect spectral unmixing. Furthermore, we see that the error

metric increases for both algorithms as the noise level increases, which is expected.

To compare and illustrate the results further, we visualize the estimated endmembers by both algo-

rithms for the case of the highest noise level (SNR = 20 dB). We pick the run in which P-COMMEND

gave the highest error. Figure 6.10(a) and 6.10(b) show the true (solid lines) and estimated (dashed

lines) endmembers resulting from the CDSU and P-COMMEND algorithms respectively. As it can

be seen, CDSU resulted in better estimates of the endmembers.

To analyze the results further, we check the cluster assignments, based on the highest membership

values, generated by P-COMMEND and CDSU. As it can be seen in table 6.2, both algorithms
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(a) (b)

(c)

Figure 6.9: Error metrics for CDSU and P-COMMEND on the Usgs1C2M3 data across the 25
runs and at all noise levels: (a) SME, (b) SMAE, (c) AME.

TABLE 6.2

Composition of the clusters generated by CDSU and P-COMMEND on the Usgs1C2M3 data with
SNR = 20 dB

Convex set 1 Convex set 2

Cluster 1 500 0

Cluster 2 0 500

succeeded in generating clusters that are pure and that correspond to the two original convex re-

gions. To analyze the fuzzy partition, we analyze the membership values of the data points in each

cluster. We plot the two first principal components of the data and we color each point with a shade

corresponding to its membership value in a specific cluster. Figures 6.11(a) and (b) show the mem-

bership values in cluster 1 generated by P-COMMEND and CDSU. Similarly, figures 6.12(a) and

(b) show the membership values in cluster 2. Compared to CDSU, P-COMMEND assigned higher

membership values in cluster 1 to some points from cluster 2 (light blue shades in figure 6.11(b)).
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(a) CDSU

(b) P-COMMEND

Figure 6.10: True (solid lines) and estimated (dashed lines) endmembers for the Usgs1C2M3 data
with SNR = 20 dB using CDSU and P-COMMEND.
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(a) CDSU (b) P-COMMEND

Figure 6.11: Membership values in cluster 1 for the Usgs1C2M3 data with SNR = 20 dB. Two
principal components of the data are scatter plotted.

(a) CDSU (b) P-COMMEND

Figure 6.12: Membership values in cluster 2 for the Usgs1C2M3 data with SNR = 20 dB. Two
principal components of the data are scatter plotted.

And due to the sum to one constraint on the memberships, the same points were assigned lower

membership values, compared to CDSU, in cluster 2 that they belong to (light green shades in figure

6.12(b)). Since these membership values are used in the update equations of the endmembers and

abundances, the parameters estimated using CDSU are more accurate than those estimated using

P-COMMEND.

Recall that the update equation of the memberships for P-COMMEND is:

uij =

[
(xj − pijEi)(xj − pijEi)

T
] 1

1−m

C∑
q=1

[(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

, (6.5)
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Figure 6.13: Running time (in seconds) of CDSU and P-COMMEND on the USGS simulated data
across the 25 runs and at all noise levels.

and the update equation of the memberships for CDSU is:

uij =

[
(xj − ci)(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[(xj − cq)(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

. (6.6)

By examining (6.6), we notice that a pixel j will have a high membership in cluster i if: (i) its

spectrum is close to the centroid, ci, of that cluster in the feature space; and (ii) it fits the model

of that cluster. This is unlike the update equation of the memberships for P-COMMEND in (6.5),

where a pixel j will have a high membership in model i only if it fits that model, regardless of

the spectral distribution around it. This illustrates the importance of the clustering term in taking

the distribution of the data into account and thus leading to better endmember and abundance

estimates.

To compare the time complexity of CDSU and P-COMMEND, we generate a box plot of

the running time, expressed in seconds, across the 25 runs and at all noise levels. Figure 6.13

shows this box plot. We notice that the CDSU algorithm takes a longer time to run compared to

P-COMMEND for the cases where SNR = 30 or 50 dB. The reason for this is that CDSU requires

more computations than P-COMMEND. For the SNR = 20 dB case, we see that CDSU becomes

slightly faster than P-COMMEND. This can be explained by the clustering term in CDSU which

makes it more robust to noise and thus requiring less time to converge.

We use the Usgs1C2M3 simulated data set, with SNR = 20 dB, to illustrate another

advantage of our proposed approach. One might argue why not cluster the data first, then use a

single convex region unmixing algorithm, such as ICE, to find the endmembers and abundances

of each cluster. In other words, what is the advantage of performing unmixing and clustering
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simultaneously.

Figure 6.14 shows the clustering results of applying the FCM algorithm to the simulated data with

SNR = 20 dB. We plot the spectral signatures of the two resulting clusters, labeling each point

of them with the ground truth, i.e., the convex set it originally came from. We clearly see that

the resulting clusters include a mixture of points originally generated from both endmember sets,

and hence, any unmixing algorithm applied to each cluster would result in erroneous endmember

estimates. We should note here that the erroneous partition is not due to sensitivity of FCM to

initialization. In fact, even when we initialize the FCM with the true cluster assignments, it converges

to the same result of figure 6.14.

The partition obtained using CDSU is shown in figure 6.15. As it can be seen, unlike the FCM, CDSU

partitioned the data into 2 pure clusters even though it was initialized with the FCM. Consequently,

using this correct partition, it is more likely to estimate the correct endmembers.

In order to understand why FCM leads to mixed clusters whereas CDSU succeeds to return

pure ones, we track the objective function values of both algorithms as they run. Figure 6.16 shows

the evolution of the objective function of the FCM until its convergence. As it can be seen, it reaches

a local minimum in few iterations. For the CDSU, we track the first term of the objective function

in (3.7) (same as the FCM objective function), and the sum of all terms. As it can be seen in figure

6.17, the sum of the terms decreases as the algorithm evolves. However, the first term increases.

In other words, the optimal partition is the one that takes into account both data partitioning and

model fitting.

Using two dimensional toy data and simulated hyperspectral data, we have illustrated the

effectiveness of the proposed CDSU algorithm in identifying correct abundances and endmember

sets. We have also shown that CDSU outperformed P-COMMEND in the case of noisy data.

Furthermore, we showed the difference between our approach, that performs spectral unmixing while

simultaneously taking into account the distribution of the data in the spectral space, and simply

clustering the data and then unmixing each cluster separately. In the next section, we present the

results of CDSU on a real hyperspectral data and compare them to those of P-COMMEND.

6.2.2 Evaluation using real data

In this section, we consider a down sampled version, of size 305 × 170 pixels, of the Pavia

University real hyperspectral data set described in Section 6.1.2. We run the CDSU and P-

COMMEND algorithms on this data set using the parameters in table 6.3.

63



(a) Cluster 1

(b) Cluster 2

Figure 6.14: Spectral signatures of the clusters generated by the FCM algorithm on the Usgs1C2M3
data with SNR = 20 dB.
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(a) Cluster 1

(b) Cluster 2

Figure 6.15: Spectral signatures of the clusters generated by the CDSU algorithm on the
Usgs1C2M3 data with SNR = 20 dB.
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Figure 6.16: Evolution of the FCM objective function on the Usgs1C2M3 data (SNR = 20 dB).

Figure 6.17: Evolution of the objective function of CDSU on the Usgs1C2M3 data (SNR = 20
dB).

TABLE 6.3

Parameters used for the CDSU and P-COMMEND algorithms on the Pavia University data

Parameters CDSU P-COMMEND
C 3 3
M 3 3
m 1.25 1.25
α, β α = 1, β = [5, 5, 5] α = 5

Stopping criterion
(Iter = Iteration number)

abs
(
JCDSU (Iter+1)−JCDSU (Iter)

JCDSU (Iter+1)

)
< 10−6 abs

(
JPCOMMEND(Iter+1)−JPCOMMEND(Iter)

JPCOMMEND(Iter+1)

)
< 10−6
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(a) CDSU (b) P-COMMEND

Figure 6.18: Cluster assignments of CDSU and P-COMMEND on the Pavia University data

TABLE 6.4

Composition of the clusters generated by P-COMMEND and CDSU, in percentage, for the Pavia
University data, taking into account the labeled points only

XXXXXXXXXCluster
Class

Asphalt Meadows Gravel Trees Painted metal sheets Bare soil Bitumen Self blocking bricks Shadows

P-COMMEND

Cluster 1 16.01 22.78 3.19 35.36 0 7.14 0.19 15.30 0

Cluster 2 0.57 76.74 0.03 0.51 0 17.74 0.01 0.18 4.17

Cluster 3 40.89 0 14.58 0.03 10.66 4.71 10.38 18.66 0.06

CDSU

Cluster 1 45.54 21.46 3.98 0.24 0.03 10.29 9.23 2.32 6.88

Cluster 2 0.05 73.08 0 14.71 0 12.14 0 0 0

Cluster 3 6.45 6.17 18.32 0.04 15.49 13.36 1.16 38.97 0

Figures 6.18(a) and (b) show the images of cluster assignments for both algorithms. Cluster assign-

ments were based on the highest membership values. As it can be seen, the clusters generated by

CDSU are spatially more coherent.

Table 6.4 shows the compositions of the clusters generated by P-COMMEND and CDSU, in per-

centage, taking into account the labeled points only. The same compositions are illustrated visually

in figures 6.19(a) and (b). As it can be seen, the “Trees”, “Painted Metal Sheets”, “Bitumen”

and “Shadows” classes were assigned to unique clusters by both algorithms. On the other hand, the

“Meadows”, “Gravel” and “Bare soil” classes were divided into more than one cluster by both algo-
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(a) CDSU (b) P-COMMEND

Figure 6.19: Composition, in percentage, of the clusters generated by CDSU and P-COMMEND on
the Pavia University data, taking into account the labeled points only.

rithms. Finally, the “Asphalt” and “Self blocking bricks” classes were divided into more than one

cluster by P-COMMEND and less divided by CDSU. This is mainly due to the spectral similarity

that CDSU takes into account when partitioning the data, unlike P-COMMEND.

The proportion maps associated with the three endmembers for each of the three clusters

found by P-COMMEND and CDSU are shown in figures 6.20 and 6.21, respectively. Each pixel in

the proportion maps was multiplied by the corresponding membership value for each context so that

the corresponding endmember with high proportion is highlighted. Since we do not have labels for

the entire image, we analyze these proportion maps by comparing them to the RGB image in figure

6.3(a), labeling each map with the dominant material it represents.

It can be seen that the endmembers found by P-COMMEND are duplicated in more than one

cluster. For instance, endmembers corresponding to shadows, tall grass and trees are found in

cluster 1 and 2. Furthermore, the endmember for cement is found in clusters 1 and 3. Moreover,

some endmembers represent non coherent elements, like combining asphalt and bitumen with cement

in one endmember. In contrast, the endmembers found by CDSU are not duplicated in the three

contexts and they represent coherent elements.
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(a) Tall grass + Trees (b) Shadows (c) Cement

(d) Shadows (e) Tall grass (f) Roof bricks

(g) Bright objects (h) Asphalt + Bitumen + Cement (i) Roof metal sheets

Figure 6.20: Proportion maps estimated by the P-COMMEND algorithm for the Pavia Univer-
sity data. Each row of 3 proportion maps represents one context, and each column represents an
endmember in that context.
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(a) Asphalt + Bitumen (b) Shadows (c) Uneven bare soil

(d) Tall grass + Trees (e) Even bare soil (f) Short grass

(g) Bright objects (h) Roof metal sheets (i) Cement + Roof bricks

Figure 6.21: Proportion maps estimated by the CDSU algorithm for the Pavia University data.
Each row of 3 proportion maps represents one context, and each column represents an endmember
in that context.
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Figures 6.22(a) and (b) show the estimated endmembers by CDSU and P-COMMEND,

respectively. As it can be seen, both algorithms identified similar endmembers like the ones corre-

sponding to metal roofs, bright objects, shadows, and tall grass and trees. However, P-COMMEND

generated an almost duplicate endmember for shadows, tall grass and trees. P-COMMEND also

missed endmembers for bare soil that CDSU was able to identify.

(a) CDSU

(b) P-COMMEND

Figure 6.22: Estimated endmembers for the Pavia University data using CDSU and P-
COMMEND.

71



In this section, we presented the results of the proposed CDSU algorithm on real hyper-

spectral data and compared them to those of P-COMMEND. Both methods did agree on some

endmembers. However, while P-COMMEND resulted in some duplicate and non coherent endmem-

bers, CDSU identified coherent and diverse endmembers representing meaningful elements in the

scene.

6.3 Context Dependent Spectral Unmixing Using the Mahalanobis Distance

The Context Dependent Spectral Unmixing using the Mahalanobis distance (CDSUM) is a

variation of CDSU that allows more flexibility in the shape of the clusters. It accounts for ellipsoidal

shapes beside the traditional spherical shape. The experiment in this section is designed to illustrate

the advantage of CDSUM over CDSU using a simple toy data set.

We use the D2EC2M3 synthetic data set described in Section 6.1.1.1. CDSU and CDSUM

were ran using the same parameters values: C = 2, M = 3, m = 2, α = 40, and β = [0.2, 0.2]. For

CDSUM, σi was set to 1 for i = 1, 2.

Figure 6.23 illustrates the results of both algorithms. The retrieved clusters are represented

in different colors, and the endmembers are represented in red and green X’s. Due to the “non-

spherical” nature of the clusters, CDSU failed to identify the correct cluster assignments. This

made it fail to identify appropriate endmembers. On the other hand, CDSUM successfully identified

both the clusters and the endmembers.

(a) CDSU (b) CDSUM

Figure 6.23: Results of CDSU and CDSUM on the D2EC2M3 data.
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(a) RGB image (b) Segmented image

Figure 6.24: The University of Southern Mississippi data.

6.4 Cluster Constrained Multi-Model Unmixing

The Cluster Constrained Multi-Model Unmixing algorithm is a semi-supervised variation of

CDSU where partial supervision information, in the form of cluster assignment constraints, is used to

guide the search process and avoid local minimum solutions. In order to generate such constraints,

we needed data collected by two sensors, specifically hyperspectral and LIDAR sensors. We use

a down sampled version, of size 163 × 169 pixels, of the University of Southern Mississippi

hyperspectral and LIDAR data described in Section 6.1.2.

First, the LIDAR image is segmented using the Digital Elevation Maps (DEM) to partition

it into different elevation levels. Then, the vegetation regions are identified using the normalized

difference vegetation index NDVI on the co-located hyperspectral image. Finally, the shadowed

regions are identified using the altitude of the plane, the position of the sun at the time of the

collection, and the DEM [94]. Figure 6.24 illustrates the RGB image of the area and the resulting

segmented image. According to [94], the identified segments correspond to: (0) unlabeled, (1)

ground/impervious, (2) ground/pervious, (3) ground/shadow, (4) trees, (5) buildings, (6) beach and

(7) calibration tarps. The segmented image is used to construct a set of should-link constraints by

selecting pairs of pixels that belong to the same segment. The image has a total of 27547 pixels, and

a subset of pixels were selected randomly to create a set of constraints that includes 6840 should-link

pairs. The dimensionality of the hyperspectral data was reduced from 68 to 30 using the Ward’s

linkage strategy with divergence from [95].

To illustrate the advantage of using partial supervision, we compare the performance of
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CC-MMU and CDSU. We ran these algorithms using the parameters in table 6.5. Due to the high

dimensionality of the feature space, we set the off-diagonal elements of the norm matrices Ai to

zero.

TABLE 6.5

Parameters used for the CC-MMU and CDSU algorithms on the University of Southern Mis-
sissippi data

Parameters C M m α β γ σi, ∀i ρjk, ∀j, k
CC-MMU 3 3 2 4 [10, 10, 10] 0.3 1 1

CDSU 3 3 2 4 [10, 10, 10] N/A

Figures 6.25 and 6.26 illustrate the proportion maps resulting from CC-MMU and CDSU

respectively. The proportions were multiplied by the corresponding cluster memberships in order to

highlight pixels from that cluster. The values are displayed as a heat map where small values are

shown in dark blue and large values in dark red. Each proportion map is labeled with the dominant

material it represents. In absence of ground truth, endmember labeling was done by comparing the

proportion maps to the RGB image in figure 6.24(a). It can be seen that cluster 2 from CC-MMU

(2nd row in figure 6.25) and cluster 1 from CDSU (1st row in figure 6.26) are identical. However, the

two remaining clusters are different. CDSU combined bare soil and cement in one endmember in

cluster 3 (3rd row in figure 6.26), whereas CC-MMU succeeded in identifying different endmembers

for those materials (3rd row in figure 6.25). We also notice that CC-MMU combined man-made

materials (asphalt, bitumen, cement) in one cluster (3rd row in figure 6.25), as opposed to CDSU

which divided them into two different clusters (2nd and 3rd rows in figure 6.26).

We also provide a comparison of running CDSU, CDSUM and CC-MMU using the Euclidean

and the Mahalanobis distances by reporting the number of satisfied constraints in table 6.6. We

TABLE 6.6

Number of satisfied constraints using CC-MMU and CDSU with Euclidean and Mahalanobis dis-
tances on the University of Southern Mississippi data

Semi-supervised Unsupervised
CC-MMU (Euclidean) CC-MMU (Mahalanobis) CDSU CDSUM

4842 / 6840 6591 / 6840 4755 / 6840 6263 / 6840

notice that running CC-MMU using the Mahalanobis distance yields more satisfied constraints.

This is expected since the Mahalanobis distance allows for more degrees of freedom by seeking

ellipsoidal clusters instead of spherical ones as with the Euclidean distance. The additional degrees
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Figure 6.25: Proportion maps from CC-MMU on the University of Southern Mississippi data.
Rows correspond to clusters and columns correspond to endmembers.
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Figure 6.26: Proportion maps from CDSU on the University of Southern Mississippi data.
Rows correspond to clusters and columns correspond to endmembers.
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of freedom enable the supervision constraints to have more influence on the final partition. It is worth

mentioning here that the proportion maps for CDSUM and CC-MMU with the Mahalanobis distance

are fairly similar. Moreover, the proportion maps for CDSU and CC-MMU using the Euclidean

distance are also fairly similar. This indicates that, for this data, the Mahalanobis distance is more

influential than the semi-supervision information for the clusters formation. Nevertheless, CC-MMU

can still be helpful for other data sets or with other supervision information as it offers the option

to incorporate domain and expert knowledge into the unmixing process.

6.5 Proportion Constrained Multi-Model Unmixing

The Proportion Constrained Multi-Model Unmixing (PC-MMU) algorithm is another semi-

supervised version of CDSU where partial supervision information, in the form of constraints based

on proportions, is used to guide the search process and avoid local minimum solutions.

We use the same data of the previous section to test PC-MMU. Two cases of generating the

constraints are used. In the first case, the set of should-link constraints of the previous section is

used as the set of points constrained to have similar proportions in the extracted endmembers. In

the second case, we use the consensus analysis presented in Section 4.2 to form the set of constraints.

We randomly select 5000 pairs of voters, that have high co-association values, from the set Ha. The

voters are points having a high proportion value in any extracted endmember of any of the unmixing

algorithms. The co-association value of a pair of voters is obtained over the entire unmixing ensemble,

forming a new similarity measure based on the proportions. A pair of voters that have a high co-

association value is likely to have similar proportions in the extracted endmembers.

For both cases, we use the same parameters as for CC-MMU in Section 6.4 (table 6.5).

The resulting proportion maps are fairly similar to the ones resulting from CC-MMU (figure 6.25).

Hence, the same conclusions apply here.

6.6 Robust Context Dependent Spectral Unmixing

The Robust Context Dependent Spectral Unmixing (RCDSU) is a variation of CDSU that

can handle noisy data. It is based on the use of possibilistic membership functions along with the

fuzzy membership functions of CDSU. The fuzzy memberships are used to partition the spectra

space into multiple convex sets that span the entire space and avoid coincident clusters, while the

possibilistic memberships are used to reduce the effect of noise and obtain robust estimates of the

endmembers and proportions within each cluster. In all results reported in this chapter, we update
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the parameters ηi every iteration using [85]

ηi = mean{costij , tij ≥ tQi }, (6.7)

where costij is given by (3.31), and tQi is the Qth percentile of the typicalities in cluster i. Q can

be thought of as the percentage of points not belonging to cluster i. In this experiment, we let

Q = 100− 100
C . Furthermore, the convergence of the algorithm is checked by comparing the values

of the objective function from successive iterations. If the difference is below some threshold, the

algorithm is stopped.

We design the following experiment so that we evaluate the ability of RCDSU to handle

noisy data. We use the Usgs2C2M3 simulated hyperspectral data sets described in Section 6.1.1.2.

We run P-COMMEND, CDSUM and RCDSU 25 times using the parameters in table 6.7.

When the data is expected to be noisy, we set a higher weight to the possibilistic memberships

(b = 0.9) compared to the fuzzy memberships (a = 0.1). Otherwise, we set a = 0.9 and b = 0.1.

TABLE 6.7

Parameters used for P-COMMEND, CDSUM and RCDSU on the Usgs2C2M3 data

C M m n a b βi, ∀i σi, ∀i α
P-COMMEND 2 3 1.5 N/A 1

CDSUM 2 3 1.5 N/A 1 1 100
RCDSU 2 3 1.5 1.5 0.1 0.9 1 1 100

The estimated endmembers from all algorithms are compared to the true endmembers using

the spectral mean angle error (SMAE) defined in equation (6.4). We report the average and standard

deviation of the SMAE of the resulting endmember estimates from all algorithms in all runs in table

6.8. A two-sample t-test at the 5% significance level shows that, for noisy data, RCDSU provides

significantly better endmember estimates than P-COMMEND and CDSUM (p-value < 1e-20). In

TABLE 6.8

Average (± standard deviation) of the SMAE over 25 runs for P-COMMEND, CDSUM and RCDSU
on the Usgs2C2M3 data

% of noise points 0 5 10
P-COMMEND 0.0630 (±0) 0.1609 (±0.0046) 0.1644 (±0.0135)

CDSUM 0.0630 (±0) 0.1609 (±0.0046) 0.1662 (±0.0119)
RCDSU 0.0639 (±0) 0.0681 (±0.0074) 0.0757 (±0.0105)

figure 6.27, we illustrate the estimated (dashed line) versus the true (solid line) endmembers for

CDSUM and RCDSU for the Usgs2C2M3 data with 5% noise points. As it can be seen, the
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(a) CDSUM

(b) RCDSU

Figure 6.27: True (solid line) and estimated (dashed line) endmembers of CDSUM and RCDSU for
the Usgs2C2M3 data with 5% noise points.

RCDSU was not influenced by the presence of the noise points unlike CDSUM which got affected

and resulted in erroneous estimates.

To verify the ability of RCDSU to identify noise points, after convergence, we identified

points with small (< 0.1) possibilistic memberships in all clusters. All of these points correspond to

the points with added noise.
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Figure 6.28: Initial cluster assignments on the Usgs2C2M3 data with 5% noise points using RCDSU
with Cmax = 5.

6.7 Unsupervised Robust Context Dependent Spectral Unmixing

So far, we assumed that the number of contexts is known. If this is not the case, we use

the proposed Unsupervised Robust Context Dependent Spectral Unmixing (U-RCDSU). U-RCDSU

takes advantage of the fact that the possibilistic membership functions are not constrained to sum

to one, and hence, small clusters covering the same dense regions would expand and become similar.

These are then merged and the number of clusters, initially overspecified, is reduced until it reaches

the optimal number. In the following, we evaluate the ability of U-RCDSU to determine the correct

number of contexts using simulated and real data.

6.7.1 Evaluation using simulated data

We use the same data (with 5% noise points) and parameters of Section 6.6 and we run

U-RCDSU by overspecifying the number of clusters to Cmax = 5. We let ε = 0.1. The initial cluster

assignments are shown in figure 6.28, where we plot the 2 principal components (PC) of the data,

labeling each point with its cluster assignment. Figure 6.29 shows which clusters got merged after

each iteration of the U-RCDSU algorithm. Figure 6.30 illustrates the final cluster assignments of

the data. As it can be seen, the algorithm converged to C = 2. The resulting endmembers are shown

in figure 6.31. As it can be seen, the identified endmembers are unaffected by the noise points, and

are similar to the results of RCDSU in figure 6.27(b).
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Figure 6.29: Cluster merging on the Usgs2C2M3 data with 5% noise points using U-RCDSU.

Figure 6.30: Final cluster assignments on the Usgs2C2M3 data with 5% noise points using U-
RCDSU.

6.7.2 Evaluation using real data

We use two real hyperspectral data sets: the Pavia University and the University of

Southern Mississippi data.

6.7.2.1 Pavia University data

We use a down sampled version, of size 204 × 114 pixels, of the Pavia University data

described in Section 6.1.2. We run the unsupervised RCDSU algorithm using Cmax = 10, M = 3,

m = n = 1.5, a = b = 0.5, α = 100, βi = 4, ∀i, σi = 1, ∀i and ε = 0.1. The algorithm converged

to C = 2. Figure 6.32 shows the evolution of the cluster assignments of the data points as U-

RCDSU runs. We plot 2 principal components (PC) of the data, labeling each point with its cluster
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Figure 6.31: True (solid line) and estimated (dashed line) endmembers for the Usgs2C2M3 data
with 5% noise points using U-RCDSU.

assignment. Figure 6.32(a) shows the cluster assignments after running RCDSU with a = b = 0.5

and Cmax = 10. Figure 6.32(b) shows the cluster assignments after running RCDSU with a = 0,

b = 1 and Cmax = 10. Figure 6.32(c) shows the cluster assignments after one more iteration of

U-RCDSU. As it can be seen, we went from 10 to 4 clusters. Finally, figure 6.32(d) shows the final

cluster assignments after convergence (1 more iteration). We went from 4 to 2 clusters.

Since the ground truth is not available for the entire scene, we evaluate the performance

of the algorithm qualitatively by displaying the resulting proportion maps and interpreting them

based on the RGB image of the scene shown in figure 6.3(a). The proportion maps associated with

the three endmembers for each of the two clusters are shown in figure 6.33. The proportions were

multiplied by the corresponding weighted cluster memberships (auij + btij) in order to highlight

pixels from that cluster. Dark blue represents small values and dark red represents large values.

Each proportion map is labeled with the dominant material it represents.

It can be seen that U-RCDSU resulted in two intuitive clusters in the sense that one cluster

corresponds to natural materials, and the other corresponds to man-made materials. The three

proportion maps of context 1 (figure 6.33(a)) correspond to vegetation, shadows and bare soil, re-

spectively. These materials represent natural regions in the scene. The three proportion maps of

context 2 (figure 6.33(b)) correspond to brick roofs, metal roofs, and asphalt and bitumen, respec-

tively. They represent urban regions in the scene. One may conclude that U-RCDSU identified

a reasonable number of contexts with coherent content and appropriate endmembers within each

82



(a) Assignments with a = b = 0.5 and Cmax = 10. (b) Assignments with a = 0, b = 1 and Cmax = 10.

(c) Assignments after 1 iteration. (d) Assignments after convergence (iteration 2).

Figure 6.32: Evolution of the cluster assignments using U-RCDSU with Cmax = 10 on the Pavia
University data.

context.

6.7.2.2 University of Southern Mississippi data

We run the unsupervised RCDSU algorithm on the other real data, the University of

Southern Mississippi hyperspectral data described in Section 6.1.2. We use a down sampled

version of size 163 × 169 pixels. We let Cmax = 5, M = 3, m = n = 1.5, a = b = 0.5, α = 100,

βi = 1, ∀i, σi = 1, ∀i and ε = 0.2. The algorithm converged to C = 2. Since the ground

truth is not available for this scene, we evaluate the performance of the algorithm qualitatively by

displaying the resulting proportion maps and interpreting them based on the RGB image of the

scene shown in figure 6.24(a). Each proportion map was multiplied by the corresponding weighted

memberships (auij+btij). Figure 6.34 illustrates these maps where the title of each one represents the

corresponding dominant materials. For this data also, the U-RCDSU identified a reasonable number

of contexts with coherent content. The endmembers in cluster 1 correspond to grass, asphalt and
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(a) Proportion maps in context 1

(b) Proportion maps in context 2

Figure 6.33: Proportion maps from U-RCDSU on the Pavia University data. Rows correspond to
clusters and columns correspond to endmembers.

84



Figure 6.34: Proportion maps from U-RCDSU on the University of Southern Mississippi data.
Rows correspond to clusters and columns correspond to endmembers.

bitumen, and beach sand. In cluster 2, the endmembers represent bare soil, shadows and trees.

6.8 Robust Unmixing Using Consensus Analysis

Robust Unmixing using Consensus Analysis is based on the idea that “optimal” endmembers

in the data will have a consensus among multiple unmixing results. The method combines results

from multiple unmixing algorithms with different numbers of endmembers to find the optimal end-

members using consensus analysis. The approach overcomes the weaknesses of individual algorithms

and provides a robust alternative to estimating the endmembers in the data. First, we illustrate the

results of the proposed approach on the Usgs3C1M4 simulated data described in Section 4.1. Then,

we present the results on a real data. The pixels’ proportion values, for the unmixing algorithms

that return endmembers only, are computed through a least squares constrained minimization using

Lagrange Multipliers optimization.
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Figure 6.35: iVAT image of Ha of the Usgs3C1M4 data.

6.8.1 Evaluation using simulated data

For this data set, we set Q = 20, αp = 0.85 and αc = 95th percentile of {C(j, l)| j 6= l}. This

resulted in 151 voters (∼ 8% of the data) in the set Ha. First, to illustrate the fact that Ha can be

easily clustered, we use the Improved Visual Assessment of Cluster Tendency (iVAT) [96] algorithm

to visualize it. iVAT takes as input a dissimilarity matrix D and reorders its elements so that clusters

can be visualized. The iVAT image is shown in figure 6.35. We can clearly see 4 dark blocks on the

diagonal, indicating the presence of 4 clusters, which is conform to the true number of endmembers

used to generate the data. In figure 6.36, we scatter plot the 3 principal components (PC) of the

data (gray dots) and the voters of set Ha in colored dots. Each color represents one cluster of voters.

Here, an average link hierarchical clustering [90] is used to identify the 4 clusters. The medoids of

the clusters are selected to represent the extracted endmembers. These are illustrated in figure 6.36

using large red ’X’s. The large green ’X’s represent the true endmembers. As it can be seen, the

extracted endmembers are close to the true ones.

6.8.2 Evaluation using real data

In this experiment, we use a down sampled version, of size 204×114, of the Pavia University

data described in Section 6.1.2. We run ICE [61], VCA [66], PPI [59], and N-FINDR [60] using a

number of endmembers varying from 5 to 10, repeating each run 4 times (giving a total of 96 runs).

We also run U-RCDSU using Cmax = 5 with M = 2 and M = 3 (the other parameters were the

same as in Section 6.7.2.1), leading to 4 contexts with 2 endmembers each, and 2 contexts with 3

endmembers each, respectively. In total, we have 102 endmember sets.

We set Q = 50, αp = 0.85 and αc = 90th percentile of {C(j, l)| j 6= l}. This resulted in
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Figure 6.36: The PC of the Usgs3C1M4 data, the voters, the extracted endmembers and the true
endmembers.

1804 voters (∼ 8% of the data) in the set Ha. The iVAT image for these, illustrated in figure

6.37, shows 5 blocks along the diagonal. An average link hierarchical clustering algorithm identified

the 5 clusters. We pick the medoid of each cluster as the representative of the endmember. We

compute the proportion values of these endmembers in all pixels and display them as proportion

maps in figure 6.38. The values are shown as a heat map (dark blue represents low values and

dark red represents high values), and each proportion map is labeled with the dominant material it

represents. It can be seen that these proportion maps are similar to the ones in figure 6.33 resulting

from U-RCDSU, with the exception that U-RCDSU resulted in separate endmembers for shadows

and roads, as opposed to only one by the consensus unmixing.

Figure 6.37: iVAT image of Ha of the Pavia University data.
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(a) RGB (b) e1= “Vegetation” (c) e2= “Shadows+Roads”

(d) e3= “Meadows” (e) e4= “Metal roofs” (f) e5= “Bare soil”

Figure 6.38: RGB and proportion maps of the Pavia University data using consensus analysis.

Given the ground truth data of some areas in the scene, in table 6.9, we report the classes

of the labeled points having proportion values greater than a threshold t. For each endmember, we

show the threshold t and the number n of these points. We compare the proportions generated by

the consensus approach to those generated by N-FINDR, VCA, ICE and PPI, using 5 endmembers.

From table 6.9, we notice that some of the selected individual unmixing methods resulted
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TABLE 6.9

Comparison of high proportion pixels (in %) among ground truth classes using consensus unmixing, N-
FINDR, VCA, ICE and PPI on the Pavia University data

hhhhhhhhhhhhhhhhhhhEndmembers

Class
Asphalt Meadows Trees

Metal
sheets

Bare
soil

Shadows
Self-blocking

bricks
Gravel Bitumen

Consensus unmixing
e1: “Vegetation” (Fig. 6.38b), t=0.5, n=638 0 % 52.66 % 47.18 % 0 % 0.16 % 0 % 0 % 0 % 0 %
e2: “Shadows + Roads” (Fig. 6.38c), t=0.7, n=141 24.82 % 0 % 0 % 0 % 0 % 75.18 % 0 % 0 % 0 %
e3: “Meadows” (Fig. 6.38d), t=0.6, n=182 1.10 % 85.16 % 0 % 0 % 13.19 % 0 % 0 % 0 % 0.55 %
e4: “Metal roofs” (Fig. 6.38e), t=0.5, n=135 0 % 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 %
e5: “Bare soil” (Fig. 6.38f), t=0.4, n=113 6.19 % 0.88 % 0 % 0 % 84.07 % 0 % 3.54 % 5.31 % 0 %
N-FINDR
e1: “Bare soil”, t=0.2, n=266 6.77 % 18.05 % 0 % 0 % 45.86 % 0 % 15.04 % 14.29 % 0 %
e2: “Metal roofs”, t=0.2, n=78 0 % 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 %
e3: “Metal roofs”, t=0.4, n=66 0 % 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 %
e4: “Vegetation”, t=0.6, n=454 0 % 50.88 % 49.12 % 0 % 0 % 0 % 0 % 0 % 0 %
e5: “Shadows + Roads”, t=0.8, n=166 35.54 % 0 % 0 % 0 % 0 % 64.46 % 0 % 0 % 0 %
VCA
e1: “Metal roofs”, t=0.5, n=144 0 % 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 %
e2: “Vegetation”, t=0.9, n=473 0 % 39.53 % 60.47 % 0 % 0 % 0 % 0 % 0 % 0 %
e3: “Shadows”, t=0.5, n=104 0 % 0 % 0 % 0 % 0 % 100 % 0 % 0 % 0 %
e4: “Bricks + Bare soil”, t=0.6, n=727 5.23 % 12.65 % 0.14 % 0.28 % 21.46 % 0 % 42.92 % 17.33 % 0 %
e5: “Roads”, t=0.3, n=226 94.69 % 0 % 0 % 0 % 0 % 3.98 % 0.44 % 0 % 0.88 %
ICE
e1: “Shadows + Roads”, t=0.4, n=396 53.03 % 4.04 % 0 % 0 % 6.31 % 26.77 % 2.27 % 2.27 % 5.3 %
e2: “Vegetation”, t=0.6, n=458 0 % 51.31 % 48.69 % 0 % 0 % 0 % 0 % 0 % 0 %
e3: “Bare soil”, t=0.25, n=100 7 % 8 % 0 % 0 % 75 % 0 % 4 % 6 % 0 %
e4: “Shadows + Roads”, t=0.4, n=165 31.52 % 0 % 0 % 4.24 % 0 % 64.24 % 0 % 0 % 0 %
e5: “Metal roofs”, t=0.5, n=104 0 % 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 %
PPI
e1: “Not clear”, t=0.1, n=0 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
e2: “Meadows”, t=0.5, n=3084 9.82 % 51.95 % 0.23 % 0.03 % 17.67 % 0.71 % 11.87 % 7.39 % 0.32 %
e3: “Not clear”, t=0.1, n=0 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
e4: “Vegetation”, t=0.9, n=144 0 % 22.22 % 77.08 % 0 % 0.69 % 0 % 0 % 0 % 0 %
e5: “Metal roofs”, t=0.6, n=26 7.69 % 0 % 0 % 92.31 % 0 % 0 % 0 % 0 % 0 %

in duplicated endmembers (N-FINDR and ICE), or missed some endmembers (PPI). VCA, on the

other hand, resulted in appropriate endmembers. The consensus unmixing overcame the “erro-

neous” results of some runs by only considering the endmembers over which there was a consensus

among the different runs. As a result, the consensus unmixing identified more robust and consistent

endmembers.

6.9 Context Dependent Hyperspectral Subpixel Target Detection

We designed these experiments to evaluate the performance of the proposed context depen-

dent (CD) target detectors and compare them to the traditional detectors that use a single end-

member set to describe the background. For the traditional detectors, we use the MVSA, NFINDR,

PPI and the eigenvectors of the data correlation matrix method, to find a set of 3 or 6 endmembers

(referred to as MVSA3 and MVSA6, NFINDR3 and NFINDR6, PPI3 and PPI6, and EigVect3 and

EigVect6 respectively).

6.9.1 Evaluation using implanted targets

We use the Indian Pines data described in Section 6.1.2. We implant one hundred spectral

signatures of a red tarp target with abundance values ranging from 0.1 to 1. Figure 6.39 shows band
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Figure 6.39: Band 115 of the Indian Pines data with 100 implanted targets.

115 (∼ 1.5µm) of the image where we can see the grid of 100 targets. The top row consists of the

targets with abundance values of 0.1. These are difficult to see since they have low proportion (90%

of the pixel is background). The next row consists of the targets with abundance values of 0.2. This

pattern continues till the last row which corresponds to pure targets of abundance values of 1. We

run U-RCDSU using Cmax = 5, M = 3, m = n = 1.5, a = 0.1, b = 0.9, α = 100, βi = 1, ∀i,

σi = 1, ∀i and ε = 0.1. The algorithm converges to C = 2 clusters.

We start by analyzing the resulting possibilistic memberships of the target pixels in both

clusters. Figure 6.40 shows a scatter plot of the maximum possibilistic memberships of the targets in

both clusters as a function of their proportions in the pixels. All proportions are very small (< 0.06),

which means that the targets did not contribute to the estimated local background subspaces. In

other words, there was no leakage of targets into the endmember sets. We can also notice that the

larger the proportion of the target, the smaller its possibilistic membership, which is expected. These

memberships could be used on their own to detect targets. However, this would result in a large

number of false alarms, since the memberships cannot discriminate between targets and non-target

outliers.

In figure 6.41, we scatter plot the detection statistic of CD-OSP as a function of the target

proportion in the pixel. We notice that the statistic increases as the target proportion increases,

which is expected.

The performance of the detectors is evaluated using the receiver operating characteristic
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Figure 6.40: Scatter plot of the possibilistic memberships of the targets as a function of their
proportions in the pixels (Indian Pines data).

Figure 6.41: Scatter plot of the CD-OSP statistic as a function of the target proportion in the pixel
(Indian Pines data).
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(a) OSP detector (b) AMSD detector

(c) HSD detector

Figure 6.42: Receiver operating characteristic (ROC) curves (Indian Pines data).

(ROC) curves. In figure 6.42, we plot the ROC curves of the proposed context dependent detectors

versus those of the traditional detectors using MVSA. It can be seen from figure 6.42 that the

proposed context dependent target detectors outperform the traditional MVSA single subspace

detectors. We also evaluate the performance of the detectors using the Area Under the ROC Curve

(AUC). Table 6.10 reports the average and standard deviation of this measure for the CD, EigVect,

MVSA, NFINDR and PPI approaches using the OSP, AMSD and HSD detectors over 25 runs.

Using a two-sample t-test at the 5% significance level, we conclude that the proposed context

dependent detection approach outperformed the traditional detection approaches when the OSP and

AMSD detectors were used (p-value < 0.003). For HSD, the correlation matrix eigen vectors based

method outperformed the rest of the methods (p-value < 1e-10). However, the context dependent

approach still outperformed the other endmember detection methods. This can be explained by the
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TABLE 6.10

Average (± standard deviation) of the AUC over 25 runs for the CD, EigVect, MVSA, NFINDR
and PPI methods (Indian Pines data)

Detector OSP AMSD HSD
CD 0.9921 (±0.0000) 0.9443 (±0.0507) 0.9977 (±0.0000)

EigVect3 0.9822 (±0.0000) 0.8916 (±0.0000) 0.9978 (±0.0000)
EigVect6 0.9822 (±0.0000) 0.8916 (±0.0000) 0.9978 (±0.0000)
MVSA3 0.9426 (±0.0000) 0.8928 (±0.0500) 0.9725 (±0.0000)
MVSA6 0.9656 (±0.0000) 0.8992 (±0.0476) 0.9537 (±0.0001)

NFINDR3 0.8270 (±0.0566) 0.4652 (±0.1206) 0.6976 (±0.0006)
NFINDR6 0.6502 (±0.4482) 0.5316 (±0.3951) 0.7417 (±0.0368)

PPI3 0.3911 (±0.3438) 0.5000 (±0.0000) 0.1792 (±0.0590)
PPI6 0.5314 (±0.4465) 0.5313 (±0.3947) 0.3357 (±0.2581)

better description of the background using the RCDSU algorithm, which also ensures that there is no

leakage of targets into the endmember sets using the possibilistic memberships. We also notice the

robustness of the context dependent approach to initialization (AUC standard deviation < 0.051).

6.9.2 Evaluation using actual targets

The University of Southern Mississippi data described in Section 6.1.2 presents differ-

ent targets with different sizes. Figure 6.43 shows the subimage (67675 pixels) considered in this

experiment, along with the target types, locations and sizes (the circle sizes are relative to the tar-

get sizes). The targets were made of 100% cotton fabric and were emplaced so that there would be

representatives of each color type completely non-occluded, partially occluded, and almost totally

occluded. As a consequence, one can extract pure pixels of most of the colors but it is unlikely that

any algorithm will be able to find all the targets. Each target was assigned a confidence number (1-

Visible, 2- Probably the target, 3- Possibly the target, 4- Not visible) and a category (0- Target not

covered, 1- Covered partly or fully with shadow but no tree, 2- Part or all of the target is covered

by a tree branch). Table 6.11 summarizes this information about the targets. We run U-RCDSU

using Cmax = 5, M = 3, m = n = 1.5, a = 0.1, b = 0.9, α = 100, βi = 4, ∀i, σi = 1, ∀i and ε = 0.1.

The algorithm converges to C = 2 clusters.

We evaluate the performance of the detection methods using the area under the ROC curve

measure. Table 6.12 reports this measure for all methods for the “brown” targets. Two cases are

analyzed: all target sizes combined and subpixel targets only. For all target sizes combined, we

can see that the proposed context dependent approach gave good AUCs, outperforming the other

methods when the AMSD and HSD detectors were used (p-value < 0.02). For the subpixel targets,
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TABLE 6.11

Targets in the University of Southern Mississippi data

Target
Size Confidence Category

Total
0.5 1 3 1 2 3 4 0 1 2

Brown 5 5 5 2 3 1 9 4 3 8 15
Dark green 5 5 5 2 0 1 12 3 2 10 15
Faux vineyard green 5 5 5 3 3 3 6 4 2 9 15
Pea green 5 5 5 2 2 3 8 4 1 10 15
Total 20 20 20 9 8 8 35 15 8 37 60

Figure 6.43: Subimage of the University of Southern Mississippi data with target types, loca-
tions and sizes

the context dependent target detectors gave the best AUC when used with HSD (p-value < 0.05).

Table 6.13 reports this measure for all methods for the “dark green” targets, when all target

sizes are considered and when subpixel targets only are considered. For all target sizes combined, we

can see that the proposed context dependent approach gave good AUCs, outperforming the other

methods when the OSP and HSD detectors were used (p-value < 0.006). For the subpixel targets,

MVSA3 outperformed all other methods (p-value < 0.003).

Table 6.14 reports this measure for all methods for the “faux vineyard green” targets. For all

target sizes combined, we can see that the proposed context dependent approach gave good AUCs,

outperforming the other methods when the HSD detector is used (p-value < 0.005). However,
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TABLE 6.12

Average (± standard deviation) of the AUC over 25 runs for the CD, EigVect, MVSA, NFINDR
and PPI methods (University of Southern Mississippi data, brown target)

Detector OSP AMSD HSD
AUC for all target sizes

CD 0.9657 (±0.0000) 0.9812 (±0.0000) 0.9778 (±0.0000)
EigVect3 0.8665 (±0.0000) 0.9365 (±0.0000) 0.9107 (±0.0000)
EigVect6 0.9665 (±0.0000) 0.9365 (±0.0000) 0.9107 (±0.0000)
MVSA3 0.9652 (±0.0000) 0.9788 (±0.0000) 0.9671 (±0.0214)
MVSA6 0.9664 (±0.0000) 0.9697 (±0.0000) 0.9429 (±0.0128)

NFINDR3 0.7892 (±0.0000) 0.8328 (±0.0000) 0.7951 (±0.0037)
NFINDR6 0.9252 (±0.0257) 0.9359 (±0.0186) 0.8580 (±0.0938)

PPI3 0.8505 (±0.0506) 0.9011 (±0.0382) 0.8800 (±0.0086)
PPI6 0.8741 (±0.0095) 0.9301 (±0.0058) 0.8709 (±0.0001)

AUC for target size 0.5
CD 0.9773 (±0.0000) 0.9854 (±0.0000) 0.9891 (±0.0000)

EigVect3 0.9229 (±0.0000) 0.9795 (±0.0000) 0.9727 (±0.0000)
EigVect6 0.9229 (±0.0000) 0.9795 (±0.0000) 0.9727 (±0.0000)
MVSA3 0.9779 (±0.0000) 0.9846 (±0.0000) 0.9654 (±0.0000)
MVSA6 0.9817 (±0.0000) 0.9774 (±0.0000) 0.9659 (±0.0001)

NFINDR3 0.8656 (±0.0000) 0.8979 (±0.0000) 0.9823 (±0.0000)
NFINDR6 0.9765 (±0.0173) 0.9884 (±0.0072) 0.9190 (±0.1225)

PPI3 0.8973 (±0.0424) 0.9243 (±0.0509) 0.9414 (±0.0070)
PPI6 0.8805 (±0.0151) 0.9723 (±0.0052) 0.9318 (±0.0009)

MVSA6 with AMSD gave the highest AUC. For subpixel targets, MVSA3 with HSD gave the

highest AUC (p-value < 0.003).

Table 6.15 reports this measure for all methods for the “pea green” targets. When all target

sizes are considered, we can see that the proposed context dependent approach gave good AUCs,

however not as good as the MVSA3 with AMSD and HSD, and MVSA6 with OSP (p-value < 1e-9).

For subpixel targets, the context dependent target detection yielded the highest AUC when HSD

was used (p-value < 0.01).

We can also notice that the context dependent target detection approach is robust to ini-

tialization (very small standard deviation).

In contrast to the Indian Pines data with implanted targets, the context dependent approach

to target detection was not always the best compared to the traditional detectors. The nature of

the targets may explain this. In fact, most of the targets (45 out of 60) are covered partly or fully

whether by shadows of trees. Moreover, only 9 out of 60 targets are labeled as ”visible” in the

ground truth. Most of the remaining ones (35 out of 51) are not visible. So, detecting these would

be difficult. Actually, if detected, these should be considered as false alarms. Unfortunately, the
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TABLE 6.13

Average (± standard deviation) of the AUC over 25 runs for the CD, EigVect, MVSA, NFINDR
and PPI methods (University of Southern Mississippi data, dark green target)

Detector OSP AMSD HSD
AUC for all target sizes

CD 0.9533 (±0.0000) 0.9760 (±0.0000) 0.9781 (±0.0000)
EigVect3 0.9171 (±0.0000) 0.9251 (±0.0000) 0.9341 (±0.0000)
EigVect6 0.9171 (±0.0000) 0.9251 (±0.0000) 0.9341 (±0.0000)
MVSA3 0.9510 (±0.0000) 0.9795 (±0.0000) 0.9558 (±0.0000)
MVSA6 0.9149 (±0.0000) 0.9518 (±0.0000) 0.9165 (±0.0000)

NFINDR3 0.8874 (±0.0000) 0.8649 (±0.0000) 0.8676 (±0.0000)
NFINDR6 0.9088 (±0.0202) 0.9224 (±0.0161) 0.8370 (±0.0392)

PPI3 0.9418 (±0.0199) 0.9672 (±0.0040) 0.9189 (±0.0173)
PPI6 0.9179 (±0.0143) 0.9569 (±0.0089) 0.8978 (±0.0030)

AUC for target size 0.5
CD 0.9620 (±0.0000) 0.9679 (±0.0000) 0.9829 (±0.0000)

EigVect3 0.9132 (±0.0000) 0.9693 (±0.0000) 0.9765 (±0.0000)
EigVect6 0.9132 (±0.0000) 0.9693 (±0.0000) 0.9765 (±0.0000)
MVSA3 0.9634 (±0.0000) 0.9758 (±0.0000) 0.9858 (±0.0000)
MVSA6 0.9309 (±0.0000) 0.9493 (±0.0000) 0.9453 (±0.0000)

NFINDR3 0.9342 (±0.0000) 0.9197 (±0.0000) 0.9397 (±0.0000)
NFINDR6 0.9399 (±0.0065) 0.9467 (±0.0088) 0.8907 (±0.1154)

PPI3 0.9629 (±0.0028) 0.9737 (±0.0086) 0.9485 (±0.0019)
PPI6 0.9515 (±0.0148) 0.9724 (±0.0012) 0.9468 (±0.0011)

number of visible targets for each type is not enough to evaluate the methods on them only. This

can be seen in figure 6.44 where 3 principal components (PC) of the data points are shown in blue

dots while the pixels labeled as targets are shown in red dots. It can be seen that most of the targets

are located in the background cloud and that only few of them are “outliers”. This makes them

difficult to detect. This illustration should be considered with a grain of salt as it only represents

the data in a reduced dimension space.

Another explanation would be the presence of many outliers in the data (as it can be seen in

figure 6.44). The robust unmixing did not take these into account in the endmember sets formation.

Hence, they do not fit the background model and will result in a high detection score as opposed

to the global non robust unmixing methods which consider them in the background modeling, and

hence not detecting them as false alarms.
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TABLE 6.14

Average (± standard deviation) of the AUC over 25 runs for the CD, EigVect, MVSA, NFINDR
and PPI methods (University of Southern Mississippi data, faux vineyard green target)

Detector OSP AMSD HSD
AUC for all target sizes

CD 0.9328 (±0.0000) 0.9439 (±0.0000) 0.9695 (±0.0000)
EigVect3 0.9078 (±0.0000) 0.8917 (±0.0000) 0.8416 (±0.0000)
EigVect6 0.9078 (±0.0000) 0.8917 (±0.0000) 0.8416 (±0.0000)
MVSA3 0.9317 (±0.0000) 0.9378 (±0.0000) 0.9639 (±0.0000)
MVSA6 0.9448 (±0.0000) 0.9791 (±0.0000) 0.9394 (±0.0000)

NFINDR3 0.8821 (±0.0000) 0.8408 (±0.0000) 0.8825 (±0.0000)
NFINDR6 0.9493 (±0.0160) 0.9523 (±0.0226) 0.9246 (±0.0714)

PPI3 0.8180 (±0.0659) 0.9672 (±0.0040) 0.8134 (±0.0533)
PPI6 0.9405 (±0.0034) 0.9569 (±0.0089) 0.9056 (±0.0016)

AUC for target size 0.5
CD 0.9668 (±0.0000) 0.9708 (±0.0000) 0.9891 (±0.0000)

EigVect3 0.9692 (±0.0000) 0.9390 (±0.0000) 0.9211 (±0.0000)
EigVect6 0.9692 (±0.0000) 0.9390 (±0.0000) 0.9211 (±0.0000)
MVSA3 0.9678 (±0.0000) 0.9704 (±0.0000) 0.9893 (±0.0000)
MVSA6 0.9585 (±0.0000) 0.9792 (±0.0000) 0.9428 (±0.0000)

NFINDR3 0.9376 (±0.0000) 0.9038 (±0.0000) 0.9679 (±0.0000)
NFINDR6 0.9677 (±0.0141) 0.9706 (±0.0174) 0.9842 (±0.0072)

PPI3 0.8465 (±0.0646) 0.8363 (±0.0242) 0.8937 (±0.0529)
PPI6 0.9727 (±0.0012) 0.9186 (±0.0001) 0.9362 (±0.0006)

Figure 6.44: Principal components of the University of Southern Mississippi data (blue dots)
with targets (red dots).
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TABLE 6.15

Average (± standard deviation) of the AUC over 25 runs for the CD, EigVect, MVSA, NFINDR
and PPI methods (University of Southern Mississippi data, pea green target)

Detector OSP AMSD HSD
AUC for all target sizes

CD 0.9563 (±0.0000) 0.9672 (±0.0000) 0.9693 (±0.0000)
EigVect3 0.9177 (±0.0000) 0.7572 (±0.0000) 0.7230 (±0.0000)
EigVect6 0.9177 (±0.0000) 0.7572 (±0.0000) 0.7230 (±0.0000)
MVSA3 0.9532 (±0.0000) 0.9675 (±0.0000) 0.9748 (±0.0000)
MVSA6 0.9663 (±0.0000) 0.9245 (±0.0000) 0.9480 (±0.0000)

NFINDR3 0.8604 (±0.0000) 0.8264 (±0.0000) 0.7816 (±0.0000)
NFINDR6 0.9582 (±0.0249) 0.9426 (±0.0113) 0.6097 (±0.1712)

PPI3 0.8200 (±0.0480) 0.8519 (±0.0557) 0.7358 (±0.0348)
PPI6 0.9657(±0.0003) 0.9281 (±0.0002) 0.7126 (±0.0000)

AUC for target size 0.5
CD 0.9741 (±0.0000) 0.9472 (±0.0000) 0.9769 (±0.0000)

EigVect3 0.9524 (±0.0000) 0.7841 (±0.0000) 0.7900 (±0.0000)
EigVect6 0.9524 (±0.0000) 0.7841 (±0.0000) 0.7900 (±0.0000)
MVSA3 0.9729 (±0.0000) 0.9544 (±0.0000) 0.9735 (±0.0000)
MVSA6 0.9663 (±0.0001) 0.8925 (±0.0000) 0.9469 (±0.0001)

NFINDR3 0.9344 (±0.0000) 0.8400 (±0.0000) 0.7774 (±0.0000)
NFINDR6 0.9672 (±0.0224) 0.9351 (±0.0223) 0.7299 (±0.1899)

PPI3 0.8586 (±0.0790) 0.8628 (±0.0450) 0.7956 (±0.0158)
PPI6 0.9766 (±0.0002) 0.9316 (±0.0002) 0.7892 (±0.0001)
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CHAPTER 7

CONCLUSIONS AND POTENTIAL FUTURE WORK

7.1 Conclusions

A hyperspectral unmixing algorithm, called Context Dependent Spectral Unmixing (CDSU),

that finds multiple sets of endmembers is proposed. Unlike existing hyperspectral unmixing meth-

ods, CDSU is a local approach that adapts the unmixing to different regions of the spectral space.

Consequently, it finds multiple sets of endmembers that represent semantically meaningful regions

of the hyperspectral image.

CDSU is based on defining and optimizing a novel objective function that combines context identifi-

cation and hyperspectral unmixing into a joint function. This function models contexts as compact

clusters and uses the linear mixing model as the basis for unmixing. The unmixing provides opti-

mal endmembers and abundances for each context. The performance of CDSU was evaluated and

compared to similar existing methods using synthetic and real data. We showed that the proposed

method can identify meaningful and coherent contexts, and appropriate endmembers within each

context. We also showed that CDSU is more robust to noise than similar existing methods.

Several extensions of the CDSU approach were also proposed. Due to the high dimensional

and correlated nature of the hyperspectral data, the Euclidean distance used in CDSU can be restric-

tive in the sense that it limits the clusters to the spherical shape. The Context Dependent Spectral

Unmixing using the Mahalanobis distance (CDSUM) was proposed to overcome this limitation and

account for non-spherical clusters. This was achieved by using the Mahalanobis distance instead

of the Euclidean distance in the clustering component of CDSU. This allows more flexibility in the

cluster shapes and can identify ellipsoidal clusters where the variance in each feature dimension is

considered.

CDSU is based in part on clustering. However, clustering by itself is a challenging task,

especially in a high dimensional space as is the case of hyperspectral data. Many local minima solu-

tions may exist. To overcome this problem, we proposed two semi-supervised algorithms of CDSUM.

These methods use partial supervision information to guide the search process and narrow the space
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of possible solutions. The supervision information consists of small sets of pairwise constraints which

can be obtained from multiple sources of information, such as labeling few pixels in the hyperspectral

image or using information extracted from a different sensor. The first semi-supervised CDSU algo-

rithm, called Cluster Constrained Multi-Model Unmixing (CC-MMU), uses constraints derived from

the cluster assignments of the pixels. The second algorithm, called Proportion Constrained Multi-

Model Unmixing (PC-MMU), uses constraints derived from the proportion values of the pixels. To

validate both proposed semi-supervised CDSU algorithms, we used real data and we constructed a

set of constraints using information provided by a LIDAR sensor, as well as information extracted

from the consensus of multiple unmixing algorithms.

CDSU is sensitive to noise and outliers present in the hyperspectral data due to scene and/or

sensor effects. This is mainly inherited from the fuzzy clustering component of CDSU. Noise points

affect not only the resulting partition, but also the estimated endmembers and proportions within

each cluster. Possibilistic clustering has been used to overcome the sensitivity of fuzzy clustering to

noise. This approach uses possibilistic memberships to identify and reduce the effect of noise points.

These unconstrained memberships may however result in identical clusters. In order to avoid this

problem, we proposed a Robust Context Dependent Spectral Unmixing (RCDSU) algorithm that

uses both fuzzy and possibilistic memberships. Fuzzy memberships are used to partition the spectral

space into multiple sets that span the entire space and avoid coincident clusters, while possibilistic

memberships are used to reduce the effect of noise and obtain robust estimates of the endmembers

and proportions within each set.

The proposed context dependent spectral unmixing algorithms, like other multi-model un-

mixing algorithms, assume that the optimal number of endmember sets in known a priori. However,

this may not be the case, and it should be learned from the data. To address this challenge, we

proposed an Unsupervised Robust Context Dependent Spectral Unmixing (U-RCDSU) algorithm

that finds the number of contexts in the data in an unsupervised way. U-RCDSU exploits the fact

that the possibilistic memberships are not constrained to sum to one. U-RCDSU starts by over-

specifying the number of contexts, then, as the algorithm iterates, clusters covering the same dense

regions would expand and become similar. These are ultimately merged and the number of clusters

is reduced.

Spectral unmixing is a challenging, ill-posed, inverse problem. Many algorithms have been

proposed for robust, stable, and accurate unmixing solutions. Moreover, different algorithms have

different modes of operation and usually yield different results. Even the same algorithm may not
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result in the same endmembers when run multiple times. This is mainly due to the non-deterministic

behavior of the algorithm. In order to estimate the “optimal” endmembers for a given data set, we

proposed taking advantage of the many existing unmixing algorithms and exploring their similarity

and difference using consensus analysis. The idea has its roots in consensus clustering. The proposed

consensus unmixing combines the results of multiple unmixing algorithms, run multiple times with

different parameters, to find consistent endmembers in the data. The claim is that such endmembers

will have a consensus among multiple runs. The approach starts by determining the set of points

having high proportion values in any of the endmembers of the unmixing ensemble. The points

corresponding to non consistent endmembers are then filtered out using a co-association measure,

and only points with high co-association values are kept. Finally, the remaining points are clustered

and a representative from each cluster is chosen to be a consistent endmember. The points with

high co-association values have also been used to form a set of constraints on the proportions for

the semi-supervised PC-MMU algorithm.

Spectral unmixing is used as an initial step for many hyperspectral target detection algo-

rithms. The endmembers are used to model the background and compute a detection statistic for

all pixels. This is known as structured background target detection. Most of these detection al-

gorithms suffer from two main problems. First, there is the target leakage problem, which is the

contribution of the targets to the background model. This is due to the presence of the targets in

the scene being modeled. The second problem is the background modeling itself. Traditional target

detectors use global unmixing methods to model the background using a single set of endmembers.

These may not provide a good description of the hyperspectral data, especially when the scene

includes multiple regions with distinct materials. To overcome these problems, we proposed new

context dependent target detectors that are based on the robust context dependent spectral unmix-

ing algorithm (RCDSU) to better describe the background and minimize target leakage. Targets

can be though of as outliers and hence the robust unmixing will not consider them when modeling

the background. Moreover, the multi-model unmixing provides a better background description.

The proposed detectors were applied to the traditional Orthogonal Subspace Projection detector,

the Adaptive Matched Subspace Detector and the Hybrid Subspace Detector algorithms. A local

detection statistic is computed for each context and then all scores are combined using the fuzzy

memberships of the pixels.

The experimental results showed good performance of the proposed methods on synthetic

and real data. The lack of reliable ground truth information was a limiting factor when evaluating

101



the proposed algorithms on real data sets. Qualitative evaluation was employed in most cases. Data

with actual targets were scarce. The University of Southern Mississippi data was the only available

data with various targets and various background materials. The only drawback was the occlusion

which affected most of the targets present in the scene.

7.2 Potential Future Work

Although our proposed work has shown promising results, there is still room for improve-

ment. The following sections list the various areas that will be explored in the future to build upon

the developed algorithms.

7.2.1 Large scale evaluation

Hyperspectral data is not very abundant. Only few public data sets are available. Moreover,

ground truth information is usually not accurate if not missing. Even though the results on the few

used data sets were promising, more evaluation is still required. In particular, evaluation using very

large image where the notion of contexts is more important.

The National Science Foundation funded National Ecological Observatory Network (NEON1)

will be one main source of data. NEON is a continental-scale ecological observation system for

examining critical ecological issues. NEON is designed to gather and synthesize data on the impacts

of climate change, land use change, and invasive species on natural resources and biodiversity. Data

will be collected from 106 sites (60 terrestrial, 36 aquatic and 10 aquatic experimental) across the

U.S. using instrument measurements and field sampling. The sites have been strategically selected

to represent different regions of vegetation, landforms, climate, and ecosystem performance. NEON

will combine site-based data with remotely sensed data and existing continental-scale data sets (e.g.

satellite data) to provide a range of scaled data products that can be used to describe changes in

the nations ecosystem through space and time.

NEON successfully completed the planning and design phases and entered the construction

phase in Spring 2012. It is currently building sites. Constructing the entire NEON network will take

approximately five years, so it is expected to be in full operation by approximately 2017. NEON

will collect data for 30 years and will have an open-access approach to its data and information

products. Once this data is collected and made available, it can be used to compare existing multi-

model unmixing methods.

1See more at: http://www.neoninc.org/about/overview#sthash.oZ8Jcudt.dpuf
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7.2.2 Target detection

Subpixel target detection is a difficult task. Our experiments showed that no single detector

can consistently outperform the others. The fusion of multiple detectors is a potential area of

research. This would overcome the weaknesses of some detectors and take advantage of the strength

of the others. More importantly, fusion could be adapted to the different contexts identified during

the unmixing process.

Currently, in the proposed context dependent detectors, only fuzzy memberships are used. Future

work may include investigating the use of the possibilistic memberships in the detectors, as opposed

to only using them in estimating the endmember sets.

7.2.3 Multi-sensor fusion

Hyperspectral sensors can be used along with other remote sensors such as LIDAR and

Synthetic Aperture Radar (SAR) in order to take advantage of the different information provided

by each sensor. For instance, LIDAR provides elevation information, while SAR provides, among

other, structural information about the scene. This would help directly or indirectly (e.g. generating

supervision constraints) in the unmixing process.

7.2.4 Non-linear unmixing

The proposed work has focused only on the linear mixing model. This assumes that materials

are mainly mixed due to the spatial resolution of the sensor, and that the intimate mixing of

the materials on the ground is negligible. As a potential future work, the proposed multi-model

formulation could be used to generalize non-linear unmixing methods.
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APPENDIX A

Proof of Theorem 3.2.1

Theorem. The first and second order conditions yield the following local minimizers of J :

Ei =

βi(MIM×M − 1M×M ) +
N∑
j=1

umijp
T
ijpij

−1  N∑
j=1

umijp
T
ijxj

 , (A.1)

pTij = max

([
EiE

T
i

]−1[
Eix

T
j +

1− 11×M (EiE
T
i )−1Eix

T
j

11×M (EiET
i )−11M×1

1M×1

]
, 0

)
, (A.2)

uij =

[
(xj − ci)(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[(xj − cq)(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

, (A.3)

and

ci =

N∑
j=1

umijxj

N∑
j=1

umij

. (A.4)

Proof. To obtain the optimal endmember set Ei, we set the derivative of the Lagrangian L in (3.8)

with respect to Ei to zero, i.e.,

∂L

∂Ei
= 0, (A.5)

which leads to

−2α

 N∑
j=1

umijp
T
ij(xj − pijEi)− βi(MIM×M − 1M×M )Ei

 = 0. (A.6)

Solving (A.6) for Ei, we obtain

Ei =

βi(MIM×M − 1M×M ) +
N∑
j=1

umijp
T
ijpij

−1  N∑
j=1

umijp
T
ijxj

 . (A.7)

We check the second-order sufficient condition by computing the second-order derivative of L in

(3.8) with respect to Ei:

∂2L

∂E2
i

= 2α

 N∑
j=1

umijp
T
ijpij + βi(MIM×M − 1M×M )

 . (A.8)
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Since ∂2L
∂E2

i
is an M ×M matrix, we need to verify whether it is positive definite to make sure that

the solution endmember set Ei is indeed a local minimizer of J . Let e be a non zero M × 1 vector,

we check if eT ∂
2L
∂E2

i
e > 0:

eT
∂2L

∂E2
i

e = 2αeT

 N∑
j=1

umijp
T
ijpij + βi(MIM×M − 1M×M )

 e

= 2α

 N∑
j=1

umije
TpTijpije + βi(MeT IM×Me− eT1M×Me)


= 2α

 N∑
j=1

umij (pije)T (pije) + βi[MeTe− (11×Me)T (11×Me)]


= 2α

 N∑
j=1

umij‖pije‖2 + βi[M‖e‖2 − ‖11×Me‖2]

 , (A.9)

where ‖.‖ denotes the Euclidean norm.

We know that

‖11×Me‖2 ≤ ‖11×M‖2‖e‖2

= M‖e‖2. (A.10)

Hence,

eT
∂2L

∂E2
i

e > 0. (A.11)

Therefore, the solution endmember set Ei is indeed a local minimizer of the objective function J .

To obtain the optimal proportions pij , we set the derivative of L in (3.8) with respect to pij

to zero, i.e.,

∂L

∂pij
= 0, (A.12)

which leads to

−2α(umijEix
T
j − umijEiE

T
i pTij)− γij1M×1 − ξij = 0. (A.13)

Solving (A.13) for pij , we obtain

pTij =
[
EiE

T
i

]−1[
Eix

T
j +

1

2αumij
(γij1M×1 + ξij)

]
. (A.14)

The Karush-Kuhn-Tucker (KKT) conditions [83], namely the dual feasibility and the complementary

slackness, state that ξij should be equal to zero. Finally, we enforce the non-negativity constraint

on the proportion values and get

pTij = max

([
EiE

T
i

]−1[
Eix

T
j +

γij
2αumij

1M×1

]
, 0

)
. (A.15)
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If the proportion values are clipped at zero, we do renormalize them to ensure that they sum to one.

Using the fact that 11×MpTij = 1, we solve for γij and obtain

γij =
2αumij [1− 11×M (EiE

T
i )−1Eix

T
j ]

11×M (EiET
i )−11M×1

. (A.16)

This leads to

pTij = max

([
EiE

T
i

]−1[
Eix

T
j +

1− 11×M (EiE
T
i )−1Eix

T
j

11×M (EiET
i )−11M×1

1M×1

]
, 0

)
. (A.17)

Similarly, we check the second-order sufficient condition by computing the second-order derivative

of L in (3.8) with respect to pij :

∂2L

∂p2
ij

= 2αumijEiE
T
i . (A.18)

Since ∂2L
∂p2

ij
is an M ×M matrix, we can verify whether it is positive definite, to make sure that the

solution proportions pij are indeed a local minimizer of J , by verifying that pT ∂2L
∂p2

ij
p > 0 for any

non zero M × 1 vector p:

pT
∂2L

∂p2
ij

p = 2αumijp
TEiE

T
i p

= 2αumij (E
T
i p)T (ET

i p)

= 2αumij‖ET
i p‖2

> 0. (A.19)

Hence, the solution proportions pij are indeed a local minimizer of the objective function J .

To obtain the optimal memberships uij , we set the derivative of L in (3.8) with respect to

uij to zero, i.e.,

∂L

∂uij
= 0, (A.20)

and obtain:

mum−1ij (xj − ci)(xj − ci)
T + αmum−1ij (xj − pijEi)(xj − pijEi)

T − λj = 0. (A.21)

Solving (A.21) for uij , we obtain

uij =

[
λj

m[(xj − ci)(xj − ci)T + α(xj − pijEi)(xj − pijEi)T ]

] 1
m−1

. (A.22)

Using the fact that
C∑
i=1

uij = 1, we solve for λj , and obtain

λj =

[
C∑
i=1

[
1

m[(xj − ci)(xj − ci)T + α(xj − pijEi)(xj − pijEi)T ]

] 1
m−1

]1−m
. (A.23)
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This leads to

uij =

[
(xj − ci)(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[(xj − cq)(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

. (A.24)

Similarly, we check the second-order sufficient condition by computing the second-order derivative

of L in (3.8) with respect to uij :

∂2L

∂u2ij
= m(m− 1)um−2ij (xj − ci)(xj − ci)

T + αm(m− 1)um−2ij (xj − pijEi)(xj − pijEi)
T

= m(m− 1)um−2ij ‖xj − ci‖2 + αm(m− 1)um−2ij ‖xj − pijEi‖2. (A.25)

Since m > 1, ∂2L
∂u2

ij
is a positive scalar. Therefore, the solution memberships uij are indeed a local

minimizer of the objective function J .

To obtain the optimal centers ci, we set the derivative of L in (3.8) with respect to ci to

zero, i.e.,

∂L

∂ci
= 0, (A.26)

which leads to

−2

N∑
j=1

umij (xj − ci) = 0. (A.27)

Solving (A.27) for ci, we obtain

ci =

N∑
j=1

umijxj

N∑
j=1

umij

. (A.28)

Similarly, we check the second-order sufficient condition by computing the second-order derivative

of L in (3.8) with respect to ci:

∂2L

∂c2i
= 2

N∑
j=1

umij . (A.29)

Since uij ≥ 0 for all i, j, ∂
2L
∂c2
i

is a positive scalar. Therefore, the solution centers ci are indeed a local

minimizer of the objective function J .
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APPENDIX B

Proof of Theorem 3.3.1

Theorem. Optimizing the objective function in (3.13) using the Lagrange multipliers method leads

to the same update equations for the endmember sets, the proportions, and the centers as for CDSU

using the Euclidean distance (equations (3.9), (3.10) and (3.12) respectively).

The update equation for the memberships, uij, becomes

uij =

[
(xj − ci)Ai(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[
(xj − cq)Aq(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T

] 1
1−m

. (B.1)

Finally, the update equation for the norm matrices, Ai, is

Ai = [σidet(Ci)]
1
dC−1i , (B.2)

where

Ci =

N∑
j=1

umij (xj − ci)
T (xj − ci)

N∑
j=1

umij

(B.3)

is the fuzzy covariance matrix of cluster i.

Proof. We incorporate the constraints in (3.4), (3.5), and (3.14) into the objective function in (3.13)

using Lagrange multipliers and obtain

L =
C∑
i=1

N∑
j=1

umij (xj − ci)Ai(xj − ci)
T

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
−

N∑
j=1

λj

( C∑
i=1

uij − 1
)
−

C∑
i=1

N∑
j=1

γij(11×MpTij − 1)−
C∑
i=1

N∑
j=1

ξijp
T
ij −

C∑
i=1

δi(det(Ai)− σi), (B.4)

where Λ = [λ1, ..., λN ] is a vector of Lagrange multipliers corresponding to the N constraints on

the memberships uij in (3.4), Γ = [γ11, ..., γCN ] and Ξ = [ξ11, ..., ξCN ] are vectors of Lagrange

multipliers corresponding to the C ×N constraints on the proportions pij in (3.5), and ∆=[δ1, ...,

δC ] is a vector of Lagrange multipliers corresponding to the C constraints on the norm matrices Ai

in (3.14).
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The proof of the first part of the theorem, concerning the endmember sets, the proportion

sets and the centers, is similar to the one in Appendix A.

To obtain the optimal memberships uij , we set the derivative of L in (B.4) with respect to

uij to zero, i.e.,

∂L

∂uij
= 0, (B.5)

and obtain:

mum−1ij (xj − ci)Ai(xj − ci)
T + αmum−1ij (xj − pijEi)(xj − pijEi)

T − λj = 0. (B.6)

Solving (B.6) for uij , we obtain

uij =

[
λj

m[(xj − ci)Ai(xj − ci)T + α(xj − pijEi)(xj − pijEi)T ]

] 1
m−1

. (B.7)

Using the fact that
C∑
i=1

uij = 1, we solve for λj , and obtain

λj =

[
C∑
i=1

[
1

m[(xj − ci)Ai(xj − ci)T + α(xj − pijEi)(xj − pijEi)T ]

] 1
m−1

]1−m
. (B.8)

This leads to

uij =

[
(xj − ci)Ai(xj − ci)

T + α(xj − pijEi)(xj − pijEi)
T
] 1

1−m

C∑
q=1

[(xj − cq)Aq(xj − cq)T + α(xj − pqjEq)(xj − pqjEq)T ]
1

1−m

. (B.9)

We check the second-order sufficient condition by computing the second-order derivative of L in

(B.4) with respect to uij :

∂2L

∂u2
ij

= m(m− 1)um−2
ij (xj − ci)Ai(xj − ci)

T + αm(m− 1)um−2
ij (xj − pijEi)(xj − pijEi)

T . (B.10)

Since m > 1, ∂2L
∂u2

ij
is a positive scalar. Therefore, the solution memberships uij are indeed a local

minimizer of the objective function JM .

To obtain the optimal norm matrices, Ai, we set the derivative of L in (B.4) with respect

to Ai to zero, i.e.,

∂L

∂Ai
= 0, (B.11)

and obtain:
N∑
j=1

umij (xj − ci)
T (xj − ci)− δidet(Ai)A

−1
i = 0. (B.12)

Solving (B.12) for Ai, we obtain

Ai =


N∑
j=1

umij (xj − ci)
T (xj − ci)

δidet(Ai)


−1

. (B.13)
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We define the fuzzy covariance matrix

Ci =

N∑
j=1

umij (xj − ci)
T (xj − ci)

N∑
j=1

umij

. (B.14)

Using (B.14) gives

Ai =
δidet(Ai)
N∑
j=1

umij

C−1i . (B.15)

Using the fact that det(Ai) = σi, we solve for δi, and obtain

δi =

det(Ci)
1
d

N∑
j=1

umij

σ
1− 1

d
i

. (B.16)

This leads to

Ai = [σidet(Ci)]
1
dC−1i . (B.17)

Similarly, we check the second-order sufficient condition by computing the second-order derivative

of L in (B.4) with respect to Ai:

∂2L

∂A2
i

= −δi
[
det(Ai)A

−2
i − det(Ai)A

−2
i

]
= 0. (B.18)

Therefore, the test is inconclusive. We, hence, move to a higher derivative test. We compute the

third order derivative of L in (B.4) with respect to Ai:

∂3L

∂A3
i

= −3δidet(Ai)A
−3
i . (B.19)

According to (B.16), δi > 0. Hence ∂3L
∂A3

i
< 0. An odd derivative order of negative sign indicates

that the critical solution Ai is neither local maximum nor local minimum. It is instead a point of

decrease for the function JM . In fact, it is also a point of inflection, though that is not of relevance

here.

116



APPENDIX C

Proof of Theorem 3.4.1

Theorem. The update equations for the endmember sets, the abundances, the centers and the norm

matrices are similar to the ones of CDSUM (equations (3.9), (3.10), (3.12) and (3.16) respectively).

The update equation for the memberships becomes

uij =

[
d2ij + γcostij + αfitij

] 1
1−m

C∑
q=1

[
d2qj + γcostqj + αfitqj

] 1
1−m

, (C.1)

where

d2ij = (xj − ci)Ai(xj − ci)
T , (C.2)

costij =
∑

(j,k)∈S

C∑
l=1,l 6=i

ρjku
m
lk +

∑
(j,k)∈N

ρjku
m
ik, (C.3)

and

fitij = (xj − pijEi)(xj − pijEi)
T . (C.4)

Proof. We incorporate the constraints in (3.4), (3.5), and (3.14) into the objective function in (3.18)

using Lagrange multipliers and obtain

L =
C∑
i=1

N∑
j=1

umij (xj − ci)Ai(xj − ci)
T

+γ
( ∑

(j,k)∈S

C∑
i=1

C∑
l=1,l 6=i

ρjku
m
iju

m
lk +

∑
(j,k)∈N

C∑
i=1

ρjku
m
iju

m
ik

)
+α

C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
−

N∑
j=1

λj

( C∑
i=1

uij − 1
)
−

C∑
i=1

N∑
j=1

ϕij(11×MpTij − 1)−
C∑
i=1

N∑
j=1

ξijp
T
ij −

C∑
i=1

δi(det(Ai)− σi), (C.5)

where Λ = [λ1, ..., λN ] is a vector of Lagrange multipliers corresponding to the N constraints on

the memberships uij in (3.4), Φ = [ϕ11, ..., ϕCN ] and Ξ = [ξ11, ..., ξCN ] are vectors of Lagrange

multipliers corresponding to the C ×N constraints on the proportions pij in (3.5), and ∆=[δ1, ...,

δC ] is a vector of Lagrange multipliers corresponding to the C constraints on the norm matrices Ai

in (3.14).
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The proof of the first part of the theorem, concerning the endmember sets, the proportion

sets and the centers, is similar to the one in Appendix A. The proof concerning the norm matrices

is similar to the one in Appendix B.

To obtain the optimal memberships uij , we set the derivative of L in (C.5) with respect to

uij to zero, i.e.,

∂L

∂uij
= 0, (C.6)

and obtain:

mum−1ij (xj − ci)Ai(xj − ci)
T + γ

( ∑
(j,k)∈S

C∑
l=1,l 6=i

mρjku
m−1
ij umlk +

∑
(j,k)∈N

mρjku
m−1
ij umik

)
+αmum−1ij (xj − pijEi)(xj − pijEi)

T − λj = 0. (C.7)

We rewrite (C.7) as

mum−1ij d2ij + γmum−1ij costij + αmum−1ij fitij − λj = 0, (C.8)

where

d2ij = (xj − ci)Ai(xj − ci)
T , (C.9)

costij =
∑

(j,k)∈S

C∑
l=1,l 6=i

ρjku
m
lk +

∑
(j,k)∈N

ρjku
m
ik, (C.10)

and

fitij = (xj − pijEi)(xj − pijEi)
T . (C.11)

Solving (C.8) for uij , we obtain

uij =

[
λj

m[d2ij + γcostij + αfitij ]

] 1
m−1

. (C.12)

Using the fact that
C∑
i=1

uij = 1, we solve for λj , and obtain

λj =

 C∑
i=1

[
1

m[d2ij + γcostij + αfitij ]

] 1
m−1

1−m

. (C.13)

This leads to

uij =

[
d2ij + γcostij + αfitij

] 1
1−m

C∑
q=1

[
d2qj + γcostqj + αfitqj

] 1
1−m

, (C.14)

We check the second-order sufficient condition by computing the second-order derivative of L in

(C.5) with respect to uij :

m(m− 1)um−2
ij d2ij + γm(m− 1)um−2

ij costij + αm(m− 1)um−2
ij fitij . (C.15)
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Since m > 1, ∂2L
∂u2

ij
is a positive scalar. Therefore, the solution memberships uij are indeed a local

minimizer of the objective function JC .
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APPENDIX D

Proof of Theorem 3.4.2

Theorem. The update equations for the endmember sets, the memberships, the centers and the norm

matrices are similar to the ones of CDSUM (equations (3.9), (3.15), (3.12) and (3.16) respectively).

The update equation for the proportions becomes

pTij = max

[2αumijEiE
T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik + ξij1M×1

]
, 0

 , (D.1)

where

ξij =

1− 11×M

[
2αumijEiE

T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik

]
11×M

[
2αumijEiET

i + γ
∑

(j,k)∈S
ρjk

]−1
1M×1

. (D.2)

Proof. We incorporate the constraints in (3.4), (3.5), and (3.14) into the objective function in (3.23)

using Lagrange multipliers and obtain

L =
C∑
i=1

N∑
j=1

umij (xj − ci)Ai(xj − ci)
T + γ

∑
(j,k)∈S

ρjk
C∑
i=1

‖pij − pik‖2

+α
C∑
i=1

[ N∑
j=1

umij (xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
−

N∑
j=1

λj

( C∑
i=1

uij − 1
)
−

C∑
i=1

N∑
j=1

ξij(11×MpTij − 1)−
C∑
i=1

N∑
j=1

ϕijp
T
ij −

C∑
i=1

δi(det(Ai)− σi), (D.3)

where Λ = [λ1, ..., λN ] is a vector of Lagrange multipliers corresponding to the N constraints on

the memberships uij in (3.4), Ξ = [ξ11, ..., ξCN ] and Φ = [ϕ11, ..., ϕCN ] are vectors of Lagrange

multipliers corresponding to the C ×N constraints on the proportions pij in (3.5), and ∆=[δ1, ...,

δC ] is a vector of Lagrange multipliers corresponding to the C constraints on the norm matrices Ai

in (3.14).

The proof of the first part of the theorem, concerning the endmember sets, the memberships,

the centers, and the norm matrices is similar to the one in Appendix B.

To obtain the optimal proportions pij , we set the derivative of L in (D.3) with respect to

pij to zero, i.e.,

∂L

∂pij
= 0, (D.4)
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which leads to

−2α(umijEix
T
j − umijEiE

T
i pTij) + γ

∑
(j,k)∈S

ρjk(pij − pik)T − ξij1M×1 − ϕij = 0. (D.5)

Solving (D.5) for pij , we obtain

pTij =
[
2αumijEiE

T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik + ξij1M×1 + ϕij

]
, (D.6)

The Karush-Kuhn-Tucker (KKT) conditions [83], namely the dual feasibility and the complementary

slackness, state that ϕij should be equal to zero. Finally, we enforce the non-negativity constraint

on the proportion values and get

pTij = max

[2αumijEiE
T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik + ξij1M×1

]
, 0

 , (D.7)

If the proportion values are clipped at zero, we do renormalize them to ensure that they sum to one.

Using the fact that 11×MpTij = 1, we solve for ξij and obtain

ξij =

1− 11×M

[
2αumijEiE

T
i + γ

∑
(j,k)∈S

ρjk

]−1[
2αumijEix

T
j + γ

∑
(j,k)∈S

ρjkp
T
ik

]
11×M

[
2αumijEiET

i + γ
∑

(j,k)∈S
ρjk

]−1
1M×1

. (D.8)

We check the second-order sufficient condition by computing the second-order derivative of

L in (D.3) with respect to pij :

∂2L

∂p2
ij

= 2αumijEiE
T
i + γ

∑
(j,k)∈S

ρjk. (D.9)

Since ∂2L
∂p2

ij
is an M ×M matrix, we can verify whether it is positive definite, to make sure that the

solution proportions pij are indeed a local minimizer of JP , by verifying that pT ∂2L
∂p2

ij
p > 0 for any

non zero M × 1 vector p:

pT
∂2L

∂p2
ij

p = 2αumijp
TEiE

T
i p + γ

∑
(j,k)∈S

ρjkp
Tp

= 2αumij (E
T
i p)T (ET

i p) + γ
∑

(j,k)∈S

ρjk‖p‖2

= 2αumij‖ET
i p‖2 + γ

∑
(j,k)∈S

ρjk‖p‖2

> 0. (D.10)

Hence, the solution proportions pij are indeed a local minimizer of the objective function JP .
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APPENDIX E

Proof of Theorem 3.5.1

Theorem. The update equations for the proportions and the memberships are similar to the ones

of CDSUM (equations (3.10) and (3.15) respectively).

The update equation for the endmember sets, Ei, is

Ei =

[
βi(MIM×M − 1M×M ) +

N∑
j=1

(aum
ij + btnij)p

T
ijpij

]−1 [ N∑
j=1

(aum
ij + btnij)p

T
ijxj

]
. (E.1)

The update equation for the norm matrices, Ai, is the same as in equation (3.16), but with

Ci =

N∑
j=1

(aumij + btnij)(xj − ci)
T (xj − ci)

N∑
j=1

(aumij + btnij)

. (E.2)

The update equation for the typicalities, tij, is given by

tij =
1

1 +
[
b
costij
ηi

] 1
n−1

, (E.3)

where

costij = (xj − ci)Ai(xj − ci)
T + α(xj − pijEi)(xj − pijEi)

T . (E.4)

Finally, the update equation of the cluster centers ci is

ci =

N∑
j=1

(aumij + btnij)xj

N∑
j=1

(aumij + btnij)

. (E.5)

Proof. We incorporate the constraints in (3.4), (3.5), and (3.14) into the objective function in (3.26)

using Lagrange multipliers and obtain

L =
C∑
i=1

N∑
j=1

(aumij + btnij)(xj − ci)Ai(xj − ci)
T +

C∑
i=1

ηi
N∑
j=1

(1− tij)n

+α
C∑
i=1

[ N∑
j=1

(aumij + btnij)(xj − pijEi)(xj − pijEi)
T + βi(Mtrace(EiE

T
i )− 11×MEiE

T
i 1M×1)

]
−

N∑
j=1

λj

( C∑
i=1

uij − 1
)
−

C∑
i=1

N∑
j=1

γij(11×MpTij − 1)−
C∑
i=1

N∑
j=1

ξijp
T
ij −

C∑
i=1

δi(det(Ai)− σi), (E.6)
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where Λ = [λ1, ..., λN ] is a vector of Lagrange multipliers corresponding to the N constraints on

the memberships uij in (3.4), Γ = [γ11, ..., γCN ] and Ξ = [ξ11, ..., ξCN ] are vectors of Lagrange

multipliers corresponding to the C ×N constraints on the proportions pij in (3.5), and ∆=[δ1, ...,

δC ] is a vector of Lagrange multipliers corresponding to the C constraints on the norm matrices Ai

in (3.14).

The proof concerning the proportions is similar to the one in Appendix A. The proof con-

cerning the memberships is similar to the one in Appendix B. The proof concerning the endmember

sets, the centers and the norm matrices is similar to the one in Appendix A and Appendix B, with

the exception of using the weighted memberships (aumij + btnij) instead of the fuzzy memberships umij .

To obtain the optimal typicalities tij , we set the derivative of L in (E.6) with respect to tij

to zero, i.e.,

∂L

∂tij
= 0, (E.7)

and obtain:

nbtn−1ij (xj − ci)Ai(xj − ci)
T + αn tn−1ij (xj − pijEi)(xj − pijEi)

T − nηi(1− tij)n−1 = 0. (E.8)

Rearranging the terms of (E.8), we get[
tij

1− tij

]n−1
=

ηi

b[(xj − ci)Ai(xj − ci)T + α tn−1ij (xj − pijEi)(xj − pijEi)T ]
. (E.9)

Solving (E.9) for tij , we obtain

tij =
1

1 +
[
b
costij
ηi

] 1
n−1

, (E.10)

where

costij = (xj − ci)Ai(xj − ci)
T + α(xj − pijEi)(xj − pijEi)

T . (E.11)

We check the second-order sufficient condition by computing the second-order derivative of L in

(E.6) with respect to tij :

∂2L

∂t2ij
= n(n−1)btn−2

ij (xj−ci)Ai(xj−ci)T + αn(n−1) tn−2
ij (xj−pijEi)(xj−pijEi)

T +n(n−1)ηi(1−tij)n−2.

(E.12)

Since n > 1, ∂2L
∂t2ij

is a positive scalar. Therefore, the solution memberships tij are indeed a local

minimizer of the objective function JR.
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